Prescribed burning in Pinus cubensis-dominated tropical natural forestsa myco-friendly fire-prevention tool

  1. Durán-Manual, Francisco
  2. Espinosa, Juncal 1
  3. Pérez-Pereda, Edelmys
  4. Mediavilla, Olaya
  5. Geada-López, Gretel
  6. Dejene, Tatek 2
  7. Sanz-Benito, Ignacio
  8. Martín-Pinto, Pablo
  9. Martínez-Becerra, Luis W.
  1. 1 Sustainable Forest Management Research Institute, University of Valladolid, Palencia, Spain
  2. 2 Ethiopian Environment and Forest Research Institute (EEFRI), Addis Ababa, Ethiopia
Revista:
Forest systems

ISSN: 2171-5068

Ano de publicación: 2022

Volume: 31

Número: 2

Tipo: Artigo

DOI: 10.5424/FS/2022312-19318 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Outras publicacións en: Forest systems

Obxectivos de Desenvolvemento Sustentable

Resumo

Aim of study: To evaluate the effects of two different prescribed burning strategies on ectomycorrhizal (ECM) fungal species in Pinus cubensis-dominated natural forest. Area of study: Yateras Silvicultural Base Business Unit, Guantánamo, Cuba. Material and methods: In June 2015, six plots (20 × 50 m) were subjected to forward or back burning. Nine interval samplings (performed 1 week before and up to 120 days after prescribed burning) were undertaken to determine the total number of sporocarps and to evaluate the effect of fire on the soil. Main results: Eight ECM species were collected from the study plots. Suillus sp. and Amanita muscaria started fruiting 15 and 60 days after the fire, respectively. Boletus sp., Suillus brevipes, Suillus decipiens, Suillus sp., Amanita muscaria, Lactarius semisanguifluus, Scleroderma stellatum and Pisolithus arhizus were found before and after prescribed burning. Sporocarp numbers showed an increasing trend after fire and significantly recovered 75 days after forward or back burning and were significantly higher 120 days after forward burning compared to unburned plots. The ECM fungal community in the heading fire and the backfire plots did not differ significantly. However, non-metric multidimensional scaling confirmed that ECM composition differed over time. According to a Mantel test, the sampling time after prescribed burning accounted for 64% of the variation in ECM composition, followed by edaphic factors (26%) such as organic matter and Na. Research highlights: This preliminary study suggests that low-intensity prescribed burning does not have a negative effect on ECM fungal dynamics in humid tropical forests.

Referencias bibliográficas

  • Abate D, 2008. Wild mushrooms in Ethiopia and our eating habit. National Mushroom Conf., Fac. of Science, Addis Ababa Univ., May 14-15. Addis Ababa, Ethiopia.
  • Agerer R, 2001. Exploration types of ectomycorrhizae: A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11: 107-114. https://doi.org/10.1007/s005720100108
  • Antonin V, 2007. Monograph of Marasmius, Gloiocephala, Palaeocephala and Setulipes in tropical Africa. Fungus Fl Trop Afr 1: 177.
  • Baar J, Horton TR, Kretzer AM, Bruns TD, 1999. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand‐replacing wildfire. New Phytol 143: 409-418. https://doi.org/10.1046/j.1469-8137.1999.00452.x
  • Bastias BA, Huang ZQ, Blumfield,T, Xu Z, Cairney JWG, 2006. Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol Biochem 38: 3492-3501. https://doi.org/10.1016/j.soilbio.2006.06.007
  • Batista C, 1990. Forest Fire. Federal Rural University of Pernambuco, Recife. 115 pp.
  • Boa E, 2004. Wild edible fungi: A global overview of their use and importance to people. Non-wood Forest Products No 17. FAO, Rome.
  • Boddy L, Hynes J, Bebber DP, Fricker MD, 2009. Saprotrophic cord systems: Dispersal mechanisms in space and time. Mycoscience 50: 9-19. https://doi.org/10.1007/S10267-008-0450-4
  • Bottelho H, Cabral T, 1990. Ecological effects of two controlled fires on the tree stratum. University of Trás-Os-Montes, Alto Douro, Portugal.
  • Brown A, Davis K, 1973. Forest fire: control and use. McGraw-Hill Book Co., NY.
  • Brown JK, See TE, 1981. Downed dead woody fuel and biomass in the Northern Rocky Mountains. USDA Forest Service, GTR INT-117.
  • Brown S, Callaham MJ, Oliver A, Jumpponen A, 2013. Deep Ion Torrent sequencing identifies soil fungal community shifts after frequent prescribed fires in a southeastern U.S. forest ecosystem. FEMS Microbiol Ecol 86: 557-566. https://doi.org/10.1111/1574-6941.12181
  • Buscardo E, Rodríguez-Echeverría S, De Angelis P, Freitas H, 2009. Comunidades de hongos ectomicorrícicos en ambientes propensos al fuego: compañeros esenciales para el restablecimiento de pinares mediterráneos. Ecosistemas 18(2): 55-63.
  • Byram M., 1959. Combution of forest fuel is Dvid, KP forest fire control house and use. McGraw Hill, NY. pp: 77-84.
  • Cairney JWG, Bastias BA, 2007. Influences of fire on forest soil fungal communities. Can J For Res 37: 207-215. https://doi.org/10.1139/x06-190
  • Claridge AW, Trappe JM, Mills DJ, Claridge DL, 2009. Diversity and habitat relationships of hypogeous fungi. III. Factors influencing the occurrence of fire-adapted species. Mycol Res 113: 792-801. https://doi.org/10.1016/j.mycres.2009.02.014
  • Clarke KR, 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM, 2014. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth.
  • Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F et al., 2010. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biol Biochem 42: 679-698. https://doi.org/10.1016/j.soilbio.2009.12.006
  • Crabtree CD, Keller HW, Ely JS, 2010. Macrofungi associated with vegetation and soils at Ha Ha Tonka State Park, Missouri. Mycologia 102: 1229-1239. https://doi.org/10.3852/08-138
  • Dahlberg A, Schimmel J, Taylor AFS, Johannesson H, 2001. Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol Conserv 100: 151-161. https://doi.org/10.1016/S0006-3207(00)00230-5
  • Dejene T, Oria-de-Rueda JA, Martín-Pinto P, 2017. Fungal community succession and sporocarp production following fire occurrence in Dry Afromontane forests of Ethiopia. For Ecol Manage 398: 37-47. https://doi.org/10.1016/j.foreco.2017.05.011
  • Dooley SR, Treseder KK, 2012. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109: 49-61. https://doi.org/10.1007/s10533-011-9633-8
  • Dove NC, Hart SC, 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: A meta-analysis. Fire Ecol 13: 37-65. https://doi.org/10.4996/fireecology.130237746
  • Ferris R, Peace AJ, Newton AC, 2000. Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten.) plantations in England: Relationships with site factors and stand structure. For Ecol Manage 131: 255-267. https://doi.org/10.1016/S0378-1127(99)00218-2
  • Fontúrbel MT, Fernández C, Vega JA, 2016. Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: Mid-term soil microbial response. Appl Soil Ecol 107: 334-346. https://doi.org/10.1016/j.apsoil.2016.07.008
  • Fritze H, Pennanen T, Pietikäinen J, 1993. Recovery of soil microbial biomass and activity from prescribed burning. Can J For Res 23: 1286-1290. https://doi.org/10.1139/x93-164
  • Gassibe PV, Fabero RF, Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P, 2011. Fungal community succession following wildfire in a Mediterranean vegetation type dominated by Pinus pinaster in Northwest Spain. For Ecol Manage 262: 655-662. https://doi.org/10.1016/j.foreco.2011.04.036
  • Guidot A, Debaud JC, Marmeisse R, 2002. Spatial distribution of the below-ground mycelia of an ectomycorrhizal fungus inferred from specific quantification of its DNA in soil samples. FEMS Microbiol Ecol 42(3): 477-486. https://doi.org/10.1111/j.1574-6941.2002.tb01036.x
  • Hammer Ø, Harper DAT, Ryan PD, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electr 4: 9.
  • Harrington TJ, 2003. Relationships between macrofungi and vegetation in the burren. Biol Environ 103: 147-159. https://doi.org/10.1353/bae.2003.0011
  • Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI, 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220(1-3): 166-184. https://doi.org/10.1016/j.foreco.2005.08.012
  • Heinemann P, 1956. Agaricus 1. Icon. Champ. Congo. 5: 99-119.
  • Hernández A, Pérez J, Bosch D, Rivero L, Camacho E, Ruis J et al., 1999. Nueva versión de clasificación de suelos de Cuba. Ministerio de la Agricultura, Ciudad de la Habana.
  • Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P, 2013. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. For Ecol Manage 289: 48-57. https://doi.org/10.1016/j.foreco.2012.10.009
  • Hernández-Rodríguez M, de-Miguel S, Pukkala T, Oria-de-Rueda JA, Martín-Pinto P, 2015. Climate-sensitive models for mushroom yields and diversity in Cistus ladanifer scrublands. Agric For Meteorol 213: 173-182. https://doi.org/10.1016/j.agrformet.2015.07.001
  • Hjortstam K, Ryvarden L, 1996. New and interesting wood-inhabiting fungi (Basidiomycotina - Aphyllophorales) from Ethiopia. Mycotaxon 60: 181-190.
  • Holden SR, Gutierrez A, Treseder KK, 2013. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16(1): 34-46. https://doi.org/10.1007/s10021-012-9594-3
  • Jennings TN, Smith JE, Cromack K, Sulzman EW, McKay D, Caldwell BA, Beldin, SI, 2012. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon. Plant Soil 350, 393-411. https://doi.org/10.1007/s11104-011-0925-5
  • Julio G, 1996. Comportamiento del fuego: Modelos de simulación y su uso en actividades de combate. Memorias de la IV Reunión Técnica Conjunta FUPEF/SIF/IPEF. Curitiba, 118.
  • Kennedy NM, Robertson SJ, Green DS, Scholefield SR, Arocena JM, Tackaberry LE et al., 2014. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia Microbiol (Praha) 60: 399-410. https://doi.org/10.1007/s12223-014-0374-7
  • Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J, 2011. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167: 219-228. https://doi.org/10.1007/s00442-011-1981-5
  • Kutorga E, Adamonyte G, Iršenaite R, Juzenas S, Kasparavičius J, Markovskaja S et al., 2012. Wildfire and post-fire management effects on early fungal succession in Pinus mugo plantations, located in Curonian Spit (Lithuania). Geoderma 191: 70-79. https://doi.org/10.1016/j.geoderma.2012.02.007
  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD, 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173: 611-620. https://doi.org/10.1111/j.1469-8137.2006.01936.x
  • Martín-Pinto P, Vaquerizo H, Peñalver F, Olaizola J, Oria-De-Rueda JA, 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manage 225: 296-305. https://doi.org/10.1016/j.foreco.2006.01.006
  • Matias MG, Underwood AJ, Coleman RA, 2010. Effects of structural diversity and identity of patches of habitat on diversity of benthic assemblages. Austral Ecol 35: 743-751. https://doi.org/10.1111/j.1442-9993.2009.02081.x
  • Mediavilla O, Oria-de-Rueda JA, Martín-Pinto P, 2014. Changes in sporocarp production and vegetation following wildfire in a Mediterranean forest ecosystem dominated by Pinus nigra in Northern Spain. For Ecol Manage 331: 85-92. https://doi.org/10.1016/j.foreco.2014.07.033
  • Mediavilla O, Geml J, Olaizola J, Baldrian P, López-Mondejar R, Oria-de-Rueda JA, Martín-Pinto P, 2020. Seasonal influences on bacterial community dynamics in Mediterranean pyrophytic ecosystems. For Ecol Manage 478: 118520. https://doi.org/10.1016/j.foreco.2020.118520
  • Mohan JE, Cowden CC, Baas P, Dawadi A, Frankson PT, Helmick K et al., 2014. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol 10: 3-19. https://doi.org/10.1016/j.funeco.2014.01.005
  • Neary G, Klopatek C, DeBano L, Ffolliott P, 1999. Fire effects on belowground sustaibablity: a review and synthesis. For Ecol Manage 122: 51-71. https://doi.org/10.1016/S0378-1127(99)00032-8
  • Olchowik J, Hilszczańska D, Studnicki M, Malewski T, Kariman K, Borowski Z, 2021. Post-fire dynamics of ectomycorrhizal fungal communities in a Scots pine (Pinus sylvestris L.) forest of Poland. PeerJ 9: e12076. https://doi.org/10.7717/peerj.12076
  • Oliver AK, Callaham MA, Jumpponen A, 2015. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For Ecol Manage 345: 1-9. https://doi.org/10.1016/j.foreco.2015.02.020
  • Oria-de-Rueda JA, Martín-Pinto P, Olaizola J, 2008. Bolete productivity of cistaceous scrublands in northwestern Spain. Econ Bot 62(3): 323-330. https://doi.org/10.1007/s12231-008-9031-x
  • Parks SA, Miller C, Abatzoglou JT, Holden SR, Rogers BM, Treseder KK, Randerson JT, 2016. Fire severity influences the response of soil microbes to a boreal forest fire. Environ Res Lett 11: 035004. https://doi.org/10.1088/1748-9326/11/3/035004
  • Parravicini V, Micheli F, Montefalcone M, Villa E, Morri C, Bianchi CN, 2010. Rapid assessment of epibenthic communities: A comparison between two visual sampling techniques. J Exp Mar Bio Ecol 395: 21-29. https://doi.org/10.1016/j.jembe.2010.08.005
  • Peay K, Garbelotto M, Bruns T, 2010. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91: 3631-3640. https://doi.org/10.1890/09-2237.1
  • Pechony O, Shindell DT, 2010. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci 107: 19167-19170. https://doi.org/10.1073/pnas.1003669107
  • Pérez E, 2012. Effects of prescribed burning on the natural regeneration of the species Pinus cubensis GRISEB. Thesis presented as an option to the Scientific Degree of Dr. in Forest Sciences. University of Pinar del Río Hermanos Saíz Montes de Oca, Cuba.
  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE, 1989. Bootstrapping in ecosystems. Bioscience 39: 230-237. https://doi.org/10.2307/1311159
  • Pettenella D, Secco L, Maso D, 2007. NWFP&S marketing: lessons learned and new development paths from case studies in some European Countries. Small-Scale For 6: 373-390. https://doi.org/10.1007/s11842-007-9032-0
  • Pietras M, Rudawska M, Leski T, Karliński L, 2013. Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Ann For Sci 70: 115-121. https://doi.org/10.1007/s13595-012-0243-y
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC, 2016. Nlme: linear and nonlinear mixed effects models. R Package vers 3.1-128. http://CRAN.R-project.org/package=nlme.
  • Prichard SJ, Kennedy M, Wright CS, Cronan J, Ottmar R, 2017. Predicting forest floor and woody fuel consumption from prescribed burns in ponderosa pine forests. For Ecol Manage 405: 328-338. https://doi.org/10.1016/j.foreco.2017.09.025
  • Ramos M, 2010. Manejo del fuego. Ed. Félix Varela, La Habana, Cuba.
  • Reazin C, Morris S, Smith JE, Cowan AD, Jumpponen A, 2016. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. For Ecol Manage 377: 118-127. https://doi.org/10.1016/j.foreco.2016.07.002
  • Reverchon F, Del Ortega-Larrocea PM, Pérez-Moreno J, 2010. Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico. Ann Microbiol 60: 217-226. https://doi.org/10.1007/s13213-010-0030-7
  • Rincón A, Pueyo JJ, 2010. Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. For Ecol Manage 260: 361-369. https://doi.org/10.1016/j.foreco.2010.04.028
  • Rodríguez F, Molina J, 2010. Manual técnico para la modelización de la combustibilidad asociada a los ecosistemas forestales mediterráneos. Laboratorio de Incendios, Universidad de Córdoba. Spain. https://www.researchgate.net/publication/270959107_Manual_tecnico_para_la_modelizacion_de_la_combustibilidad_asociada_a_los_ecosistemas_forestales_mediterraneos
  • Ryan MH, Kirkegaard JA, 2012. The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems. Agric Ecosyst Environ 163: 37-53. https://doi.org/10.1016/j.agee.2012.03.011
  • Singer R, 1965. Marasmius. Fl. Icon. Champ. Congo 14: 253-278.
  • Smith JE, Kluber LA, Jennings TN, McKay D, Brenner G, Sulzman EW, 2017. Does the presence of large down wood at the time of a forest fire impact soil recovery? For Ecol Manage 391: 52-62. https://doi.org/10.1016/j.foreco.2017.02.013
  • Smith S, Read D, 2008. Mycorrhizal symbiosis. Academic Press, Cambridge, UK.
  • Straatsma G, Ayer F, Egli S, 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res 105: 515-523. https://doi.org/10.1017/S0953756201004154
  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM, 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  • van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E et al., 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558: 243-248. https://doi.org/10.1038/s41586-018-0189-9
  • Vázquez-Veloso A, Dejene T, Oria-de-Rueda JA, Guijarro M, Hernando C, Espinosa J et al., 2022. Prescribed burning in spring or autumn did not affect the soil fungal community in Mediterranean Pinus nigra natural forests. For Ecol Manage 512: 120161. https://doi.org/10.1016/j.foreco.2022.120161
  • Vega JA, 2001. Efectos del fuego prescrito sobre el suelo en pinares de Pinus pinaster Ait. de Galicia. PhD Thesis, Universidad Politécnica de Madrid. 417 pp.
  • Visser S, 1995. Ectomycorrhizal fungal succession in Jack Pine stands following wildfire. New Phytol 129: 389-401. https://doi.org/10.1111/j.1469-8137.1995.tb04309.x
  • Wade DD, 1989. A guide for prescribed fire in southern forests. USDA Forest Service, Southern Region, USA.
  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW, 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313 (5789): 940-943. https://doi.org/10.1126/science.1128834
  • Wicklow DT, Hirschfield BJ, 1979. Competitive hierarchy in post-fire Ascomycetes. Mycologia 71: 47-54. https://doi.org/10.1080/00275514.1979.12020986
  • Yang T, Adams JM, Shi Y, He J, Jing X, Chen L et al., 2017. Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol 1: 1-10.
  • Zakaria AJ, Boddy L, 2002. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. FEMS Microbiol Ecol 40: 135-142. https://doi.org/10.1111/j.1574-6941.2002.tb00945.x