Using testimonial narratives to persuade people about artificial intelligencethe role of attitudinal similarity with the protagonist of the message
- Igartua, Juan-José 1
- González-Vázquez, Alejandro 2
- Arcila-Calderón, Carlos 1
-
1
Universidad de Salamanca
info
-
2
Universidad Internacional Isabel I de Castilla
info
ISSN: 1386-6710, 1699-2407
Year of publication: 2022
Issue Title: Media psychology
Volume: 31
Issue: 4
Type: Article
More publications in: El profesional de la información
Abstract
La presente investigación aborda el estudio de los factores que incrementan el impacto persuasivo de los mensajes narrativos sobre inteligencia artificial (IA). En particular, se analiza el efecto en dos variables que, hasta la fecha, no han sido exploradas en este campo: las actitudes (positivas versus ambivalentes) hacia la IA expresadas por el protagonista del mensaje narrativo (un testimonial en formato audiovisual) y el papel de las creencias previas sobre la IA de los participantes. Se llevó a cabo un experimento online (N = 652) para contrastar el efecto de la similitud actitudinal en la identificación con el protagonista del mensaje narrativo y el efecto indirecto en las actitudes e intención de uso de la IA. Los resultados mostraron que el mensaje cuyo protagonista expresaba actitudes positivas hacia la IA inducía una mayor identificación únicamente en aquellos participantes con creencias positivas previas. En cambio, el mensaje cuyo protagonista expresaba actitudes ambivalentes hacia la IA inducía mayor identificación solamente entre los participantes con creencias previas negativas. Además, se observó que la identificación y la elaboración cognitiva actuaban como mecanismos mediadores del efecto de la similitud actitudinal sobre las actitudes y la intención de uso de la IA. Los hallazgos se discuten en el ámbito de la investigación sobre persuasión narrativa y del desarrollo de campañas sobre la mejora de la percepción social de la ciencia de datos.
Funding information
El presente trabajo se ha realizado en el marco del proyecto de investigación "Uso del periodismo de datos y persuasión narrativa para mejorar el conocimiento y la percepción pública del big data y la inteligencia artificial", financiado por el Ministerio de Ciencia e Innovación (referencia FT-19-15021)Funders
-
Ministerio de Ciencia e Innovación
Spain
- FT-19-15021
Bibliographic References
- Barriga, Claudia A.; Shapiro, Michael A.; Fernandez, Marissa L. (2010). “Science information in fictional movies: effects of context and gender”. Science communication, v. 32, n. 1, pp. 3-24. https://doi.org/10.1177/1075547009340338
- Bilandzic, Helena; Busselle, Rick (2013). “Narrative persuasion”. In: Dillard, James P.; Shen, Lijang. Persuasion: developments in theory and practice, pp. 200-219. USA: Sage. ISBN: 987 1 4129 8313 6
- Bilandzic, Helena; Kinnebrock, Susanne; Klingler, Magdalena (2020). “The emotional effects of science narratives: a theoretical framework”. Media and communication, v. 8, n. 1, pp. 151-163. https://doi.org/10.17645/mac.v8i1.2602
- Braddock, Kurt; Dillard, James P. (2016). “Meta-analytic evidence for the persuasive effect of narratives on beliefs, attitudes, intentions, and behaviors”. Communication monographs, v. 83, n. 4, pp. 446-467. https://doi.org/10.1080/03637751.2015.1128555
- Cave, Stephen; Coughlan, Kate; Dihal, Kanta (2019). “Scary robots: examining public responses to AI”. In: Proceedings of the 2019 AAAI/ACM Conference on AI, ethics, and society, pp. 331-337. https://doi.org/10.1145/3306618.3314232
- Cave, Stephen; Dihal, Kanta (2019). “Hopes and fears for intelligent machines in fiction and reality”. Nature machine intelligence, v. 1, n. 2, pp. 74-78. https://doi.org/10.1038/s42256-019-0020-9
- Chen, Meng; Bell, Robert A. (2021). “A meta-analysis of the impact of point of view on narrative processing and persuasion in health messaging”. Psychology & health, v. 37, n. 5, pp. 545-562. https://doi.org/10.1080/08870446.2021.1894331
- Chen, Meng; Bell, Robert A.; Taylor, Laramie D. (2017). “Persuasive effects of point of view, protagonist competence, and similarity in a health narrative about type 2 diabetes”. Journal of health communication, v. 22, n. 8, pp. 702-712. https://doi.org/10.1080/10810730.2017.1341568
- Cohen, Jonathan (2001). “Defining identification: a theoretical look at the identification of audiences with media characters”. Mass communication & society, v. 4, n. 3, pp. 245-264. https://doi.org/10.1207/S15327825MCS0403_01
- Cohen, Jonathan; Hershman-Shitrit, Michael (2017). “Mediated relationships with TV characters: the effects of perceived and actual similarity in personality traits”. Scientific study of literature, v. 7, n. 1, pp. 109-128. https://doi.org/10.1075/ssol.7.1.05coh
- Cohen, Jonathan; Tal-Or, Nurit (2017). “Antecedents of identification: character, text, and audiences”. In: Hakemulder, Frank; Kuipers, Moniek M.; Tan, Ed S.; Bálint, Katalin; Doicaru, Miruna M. Narrative absorption, pp. 271-292. Amsterdam: John Benjamins Publishing Company. ISBN: 978 90 27265135
- Cohen, Jonathan; Tal-Or, Nurit; Mazor-Tregerman, Maya (2015). “The tempering effect of transportation: exploring the effects of transportation and identification during exposure to controversial two-sided narratives”. Journal of communication, v. 65, n. 2, pp. 237-258. https://doi.org/10.1111/jcom.12144
- Cohen, Jonathan; Weimann-Saks, Dana; Mazor-Tregerman, Maya (2018). “Does character similarity increase identification and persuasion?”. Media psychology, v. 21, n. 3, pp. 506-528. https://doi.org/10.1080/15213269.2017.1302344
- Dahlstrom, Michael F. (2010). “The role of causality in information acceptance in narratives: an example from science communication”. Communication research, v. 37, n. 6, pp. 857-875. https://doi.org/10.1177/0093650210362683
- Dahlstrom, Michael F.; Ho, Shirley S. (2012). “Ethical considerations of using narrative to communicate science”. Science communication, v. 34, n. 5, pp. 592-617. https://doi.org/10.1177/1075547012454597
- Dale, Katherine R.; Moyer-Gusé, Emily (2020). “Interdependence in mediated intergroup contact: exploring the common ingroup identity model in a fictional narrative”. Journal of media psychology: theories, methods, and applications, v. 33, n. 1, pp. 5-15. https://doi.org/10.1027/1864-1105/a000273
- De-Graaf, Anneke (2014). “The effectiveness of adaptation of the protagonist in narrative impact: similarity influences health beliefs through self-referencing”. Human communication research, v. 40, n. 1, pp. 73-90. https://doi.org/10.1111/hcre.12015
- De-Graaf, Anneke; Sanders, José; Hoeken, Hans (2016). “Characteristics of narrative interventions and health effects: a review of the content, form, and context of narratives in health-related narrative persuasion research”. Review of communication research, v. 4, pp. 88-131. https://doi.org/10.12840/issn.2255-4165.2016.04.01.011
- De-Graaf, Anneke; Van-Leeuwen, Lonneke (2017). “The role of absorption processes in narrative health communication”. In: Hakemulder, Frank; Kuipers, Moniek M.; Tan, Ed S.; Bálint, Katalin; Doicaru, Miruna M. Narrative absorption, pp. 271-292. Amsterdam: John Benjamins Publishing Company. ISBN: 978 90 27265135
- Faul, Franz; Erdfelder, Edgar; Lang, Albert-Georg; Buchner, Axel (2007). “G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences”. Behavior research methods, v. 39, n. 2, pp. 175-191. https://doi.org/10.3758/BF03193146
- Gaertner, Samuel L.; Dovidio, John F.; Anastasio, Phylis A.; Bachman, Betty A.; Rust, Mary C. (1993). “The common ingroup identity model: recategorization and the reduction of intergroup bias”. European review of social psychology, v. 4, n. 1. https://doi.org/10.1080/14792779343000004
- Granulo, Armin; Fuchs, Christoph; Puntoni, Stefano (2019). “Psychological reactions to human versus robotic job replacement”. Nature human behaviour, v. 3, n. 10, pp. 1062-1069. https://doi.org/10.1038/s41562-019-0670-y
- Hayes, Andrew F. (2022). Introduction to mediation, moderation, and conditional process analysis. New York: The Guilford Press. ISBN: 978 1 462549030
- Hoeken, Hans; Fikkers, Karin M. (2014). “Issue-relevant thinking and identification as mechanisms of narrative persuasion”. Poetics, v. 44, pp. 84-99. https://doi.org/10.1016/j.poetic.2014.05.001
- Hoeken, Hans; Kolthoff, Matthijs; Sanders, José (2016). “Story perspective and character similarity as drivers of identification and narrative persuasion”. Human communication research, v. 42, n. 2, pp. 292-311. https://doi.org/10.1111/hcre.12076
- Igartua, Juan-José; Barrios, Isabel (2012). “Changing real-world beliefs with controversial movies: processes and mechanisms of narrative persuasion”. Journal of communication, v. 62, n. 3, pp. 514-531. https://doi.org/10.1111/j.1460-2466.2012.01640.x
- Igartua, Juan-José; Rodríguez-Contreras, Laura (2020). “Narrative voice matters! Improving smoking prevention with testimonial messages through identification and cognitive processes”. International journal of environmental research and public health, v. 17, n. 19, p. 7281. https://doi.org/10.3390/ijerph17197281
- Igartua, Juan-José; Vega, Jair (2016). “Identification with characters, elaboration, and counterarguing in entertainment-education interventions through audiovisual fiction”. Journal of health communication, v. 21, n. 3, pp. 293-300. https://doi.org/10.1080/10810730.2015.1064494
- Igartua, Juan-José; Wojcieszak, Magdalena; Kim, Nuri (2019). “How the interplay of imagined contact and first‐person narratives improves attitudes toward stigmatized immigrants: a conditional process model”. European journal of social psychology, v. 49, n. 2, pp. 385-397. https://doi.org/10.1002/ejsp.2509
- Kaufman, Geoff F.; Libby, Lisa K. (2012). “Changing beliefs and behavior through experience-taking”. Journal of personality and social psychology, v. 103, n. 1. https://doi.org/10.1037/a0027525
- Lichtenthaler, Ulrich (2020). “Extremes of acceptance: employee attitudes toward artificial intelligence”. Journal of business strategy, v. 41, n. 5, pp. 39-45. https://doi.org/10.1108/JBS-12-2018-0204
- Makridakis, Spyros (2017). “The forthcoming artificial intelligence (AI) revolution: its impact on society and firms”. Futures, v. 90, pp. 46-60. https://doi.org/10.1016/j.futures.2017.03.006
- Morris, Brandi S.; Chrysochou, Polymeros; Christensen, Jacob-Dalgaard; Orquin, Jacob L.; Barraza, Jorge; Zak, Paul J.; Mitkidis, Panagiotis (2019). “Stories vs. facts: triggering emotion and action-taking on climate change”. Climatic change, v. 154, n. 1, pp. 19-36. https://doi.org/10.1007/s10584-019-02425-6
- Moyer-Gusé, Emily (2008). “Toward a theory of entertainment persuasion: explaining the persuasive effects of entertainment-education messages”. Communication theory, v. 18, n. 3, pp. 407-425. https://doi.org/10.1111/j.1468-2885.2008.00328.x
- Niederdeppe, Jeff; Kim, Hye-Kung; Lundell, Helen; Fazili, Faheem; Frazier, Bonnie (2012). “Beyond counterarguing: simple elaboration, complex integration, and counterelaboration in response to variations in narrative focus and sidedness”. Journal of communication, v. 62, n. 5, pp. 758-777. https://doi.org/10.1111/j.1460-2466.2012.01671.x
- Olhede, Sofia C.; Wolfe, Patrick J. (2018). “The growing ubiquity of algorithms in society: implications, impacts and innovations”. Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences, v. 376, n. 2128. https://doi.org/10.1098/rsta.2017.0364
- Ooms, Joëlle; Hoeks, John; Jansen, Carel (2019). “Hey, that could be me: the role of similarity in narrative persuasion”. PloS one, v. 14, n. 4. https://doi.org/10.1371/journal.pone.0215359
- Petty, Richard E.; Cacioppo, John T. (1986). Communication and persuasion: central and peripheral routes to attitude change. New York: Springer-Verlag. ISBN: 978 1 4612 9378 1
- Pinto-dos-Santos, Daniel; Giese, Daniel; Brodehl, Sebastian; Chon, Seung-Hun; Kleinert, Reinhold; Baeßler, Bettina (2019). “Medical students’ attitude towards artificial intelligence: a multicentre survey”. European radiology, v. 29, n. 4, pp. 1640-1646 https://doi.org/10.1007/s00330-018-5601-1
- Pirlott, Angela G.; MacKinnon, David P. (2016). “Design approaches to experimental mediation”. Journal of experimental social psychology, v. 66, pp. 29-38. https://doi.org/10.1016/j.jesp.2015.09.012
- Rains, Stephen A. (2013). “The nature of psychological reactance revisited: a meta-analytic review”. Human communication research, v. 39, n. 1, pp. 47-73. https://doi.org/10.1111/j.1468-2958.2012.01443.x
- Reeves, Byron; Yeykelis, Leo; Cummings, James J. (2016). “The use of media in media psychology”. Media psychology, v. 19, n. 1, pp. 49-71. https://doi.org/10.1080/15213269.2015.1030083
- Sáez, Daniel; Costa-Soria, Cristóbal (2019). Whitepaper: análisis de la estrategia big data e inteligencia artificial en España [Whitepaper: Analysis of the big data and Artificial Intelligence strategy in Spain]. Ministerio de Ciencia e Innovación. https://www.farmaindustria.org/servlet/medicamentosinnovadores/docs/PRODF284617.pdf
- Samoili, Sofia; López-Cobo, Montserrat; Gómez, Emilia; De-Prato, Giuditta; Martínez-Plumed, Fernando; Delipetrev, Blagoj (2020). AI watch. Defining artificial intelligence. Towards an operational definition and taxonomy of artificial intelligence. Luxembourg: Publications Office of the European Union. ISBN: 978 92 76 17045 7 https://data.europa.eu/doi/10.2760/382730
- Schepman, Astrid; Rodway, Paul (2020). “Initial validation of the general attitudes towards artificial intelligence scale”. Computers in human behavior reports, v. 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
- Sindermann, Cornelia; Sha, Peng; Zhou, Min; Wernicke, Jennifer; Schmitt, Helena S.; Li, Mei; Sariyska, Rayna; Stavrou, Maria; Becker, Benjamin; Montag, Cristian. (2021). “Assessing the attitude towards artificial intelligence: introduction of a short measure in German, Chinese, and English language”. KI-Künstliche intelligenz, v. 35, n. 1, pp. 109-118. https://doi.org/10.1007/s13218-020-00689-0
- Slater, Michael D.; Peter, Jochen; Valkenburg, Patti M. (2015). “Message variability and heterogeneity: a core challenge for communication research”. Annals of the International Communication Association, v. 39, n. 1, pp. 3-31. https://doi.org/10.1080/23808985.2015.11679170
- Slater, Michael D.; Rouner, Donna (2002). “Entertainment-education and elaboration likelihood: understanding the processing of narrative persuasion”. Communication theory, v. 12, n. 2, pp. 173-191. https://doi.org/10.1111/j.1468-2885.2002.tb00265.x
- Tajfel, Henri (1982). Social identity and intergroup relations. Cambridge: Cambridge University Press. ISBN: 978 0 521153652
- Tal-Or, Nurit; Cohen, Jonathan (2015). “Unpacking engagement: convergence and divergence in transportation and identification”. Annals of the International Communication Association, v. 40, n. 1, pp. 33-66. https://doi.org/10.1080/23808985.2015.11735255
- Tukachinsky, Riva (2014). “Experimental manipulation of psychological involvement with media”. Communication methods and measures, v. 8, n. 1. https://doi.org/10.1080/19312458.2013.873777
- Turner, John C. (1985). “Social categorization and the self-concept: a social cognitive theory of group behavior”. In: Lawler, Edward J., Advances in group processes: theory and research, v. 2, pp. 77-121. Greenwich, CT: JAI Press. ISSN: 0882 6145
- Vayena, Effy; Blasimme, Alessandro; Cohen, Ivan-Glenn (2018). “Machine learning in medicine: addressing ethical challenges”. PLoS medicine, v. 15, n. 11, e1002689. https://doi.org/10.1371/journal.pmed.1002689
- Venkatesh, Viswanath; Morris, Michael G.; Davis, Gordon B.; Davis, Fred D. (2003). “User acceptance of information technology: toward a unified view”. MIS quarterly, v. 27, n. 3, pp. 425-478. https://doi.org/10.2307/30036540
- Walter, Nathan; Cohen, Jonathan (2019). “When less is more and more is less: the paradoxical metacognitive effects of counterarguing”. Communication monographs, v. 86, n. 3, pp. 377-397. https://doi.org/10.1080/03637751.2019.1580378
- Wojcieszak, Magdalena; Azrout, Rachid; Boomgaarden, Hajo; Alencar, Amanda-Paz; Sheets, Penelope (2017). “Integrating Muslim immigrant minorities: the effects of narrative and statistical messages”. Communication research, v. 44, n. 4, pp. 582-607. https://doi.org/10.1177/0093650215600490