A flavour on f(R) theories: theory and observations
- 1 Cosmology and Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- 2 Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, Salamanca, Spain
- Emmanuel N. Saridakis (ed. lit.)
- Ruth Lazkoz (ed. lit.)
- Vincenzo Salzano (ed. lit.)
- Paulo Vargas Moniz (ed. lit.)
- Salvatore Capozziello (ed. lit.)
- Jose Beltrán Jiménez (ed. lit.)
- Mariafelicia De Laurentis (ed. lit.)
- Gonzalo J. Olmo (ed. lit.)
Editorial: Springer
ISBN: 9783030837143, 9783030837150
Año de publicación: 2021
Páginas: 43-78
Tipo: Capítulo de Libro
Resumen
Modifications to the General Theory of Relativity emerged almost immediately upon its acceptance by the scientific community. This chapter aims at providing a detailed review on the foundations on f(R) theories, one of the simplest modifications to Einsteinian gravity in the context of addressing the underlying nature of dark energy in the Cosmological Concordance Model. Therein, we shall first revise the equivalence between f(R) theories and a subclass of scalar-tensor theories; namely, Brans–Dicke gravity. We shall also summarise the most relevant formalisms to study such theories and the viability requirements that f(R) theories need to obey to be considered as a viable alternative to Einsteinian gravity. Then, we shall present the expected cosmological expansion history evolution of these theories within the usual metric formalism and revise on how the use of the so-called 1+3 covariant gauge-invariant variables can be naturally applied to f(R) theories and consequently, how the analysis of cosmological scalar perturbations becomes highly transparent in this context. The use of both cosmological distance data as well as large-scale structure data can be used to place constraints on the values of the parameters of specific f(R) models claimed as viable. To conclude we shall illustrate two paradigmatic gravitational features of f(R) theories. First, the equivalent geodesic deviation equation for these theories and the consequences for the observer area distance extracted, a fact with relevant cosmological implications in the measure of distances and comparison with eventual data. Second, the attractive or repulsive character that these theories exhibit in a cosmological context and its relation to the so-called energy conditions in the context of extended theories of gravity
Referencias bibliográficas
- C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961). ([142 (1961)])
- T.L.J. Linden, A scalar field theory of gravitation. Int. J. Theor. Phys. 5, 359–368 (1972)
- V. Faraoni, Cosmology in Scalar Tensor Gravity, vol. 139 (Springer, Berlin, 2004)
- K.S. Stelle, Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953–969 (1977)
- R. Utiyama, B.S. DeWitt, Renormalization of a classical gravitational field interacting with quantized matter fields. J. Math. Phys. 3, 608–618 (1962)
- N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. (Cambridge University Press, Cambridge, 1984)
- I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP, Bristol, 1992), 413 p
- G.A. Vilkovisky, Effective action in quantum gravity. Class. Quant. Grav. 9, 895–903 (1992)
- A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Adv. Ser. Astrophys. Cosmol. 3, 130–133 (1987)
- R.H. Brandenberger, A Nonsingular universe, in International School of Astrophysics, ’D. Chalonge’: 2nd Course: Current Topics in Astrofundamental Physics Erice, Italy, September 6–13, 1992, pp. 102–112. arXiv:gr-qc/9210014
- M. Aparicio Resco, Á. de la Cruz Dombriz, F.J. Llanes Estrada, V. Zapatero Castrillo, On neutron stars in $$f(R)$$ theories: small radii, large masses and large energy emitted in a merger. Phys. Dark Univ. 13, 147–161 (2016). arXiv:1602.03880
- SDSS Collaboration, D.J. Eisenstein et al., Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). arXiv:astro-ph/0501171
- Supernova Search Team Collaboration, A.G. Riess et al., Type Ia supernova discoveries at $$z > 1$$ from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004). arXiv:astro-ph/0402512
- WMAP Collaboration, D.N. Spergel et al., Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007). arXiv:astro-ph/0603449
- J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus Physique 13, 566–665 (2012). arXiv:1205.3365
- T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). arXiv:1106.2476
- V. Faraoni, S. Capozziello, Beyond Einstein gravity, vol. 170 (Springer, Dordrecht, 2011)
- D. Lovelock, The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)
- G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, Dark energy in modified Gauss-Bonnet gravity: late-time acceleration and the hierarchy problem. Phys. Rev. D 73, 084007 (2006). arXiv:hep-th/0601008
- S. Nojiri, S.D. Odintsov, Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 631, 1–6 (2005). arXiv:hep-th/0508049
- A. de la Cruz-Dombriz, D. Saez-Gomez, On the stability of the cosmological solutions in $$f(R, G)$$ gravity. Class. Quant. Grav. 29, 245014 (2012). arXiv:1112.4481
- C.H. Brans, Mach’s principle and a relativistic theory of gravitation. II. Phys. Rev. 125, 2194–2201 (1962)
- J. Garcia-Bellido, A.D. Linde, D.A. Linde, Fluctuations of the gravitational constant in the inflationary Brans-Dicke cosmology. Phys. Rev. D 50, 730–750 (1994). arXiv:astro-ph/9312039
- J.A.R. Cembranos, K.A. Olive, M. Peloso, J.-P. Uzan, Quantum corrections to the cosmological evolution of conformally coupled fields. JCAP 0907, 025 (2009). arXiv:0905.1989
- L.H. Ford, Inflation driven by a vector field. Phys. Rev. D 40, 967 (1989)
- J. Beltran Jimenez, A.L. Maroto, A cosmic vector for dark energy. Phys. Rev. D 78, 063005 (2008). arXiv:0801.1486
- T. Koivisto, D.F. Mota, Vector field models of inflation and dark energy. JCAP 0808, 021 (2008). arXiv:0805.4229
- J. Alcaraz, J.A.R. Cembranos, A. Dobado, A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders. Phys. Rev. D 67, 075010 (2003). arXiv:hep-ph/0212269
- G.R. Dvali, G. Gabadadze, M. Porrati, 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B 485, 208–214 (2000). arXiv:hep-th/0005016
- D. Blaschke, M.P. Dabrowski, Conformal relativity versus Brans-Dicke and superstring theories. Entropy 14, 1978–1996 (2012). arXiv:hep-th/0407078
- J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. D 69, 044026 (2004). arXiv:astro-ph/0309411
- L. Perivolaropoulos, PPN parameter gamma and solar system constraints of massive Brans-Dicke theories. Phys. Rev. D 81, 047501 (2010). arXiv:0911.3401
- M. Hohmann, L. Jarv, P. Kuusk, E. Randla, Post-Newtonian parameters $$\gamma $$ and $$\beta $$ of scalar-tensor gravity with a general potential. Phys. Rev. D 88(8), 084054 (2013). arXiv:1309.0031. [Erratum: Phys. Rev. D 89(6), 069901 (2014)]
- S. Capozziello, S. Nojiri, S.D. Odintsov, Dark energy: the Equation of state description versus scalar-tensor or modified gravity. Phys. Lett. B 634, 93–100 (2006). arXiv:hep-th/0512118
- T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010). arXiv:0805.1726
- T.P. Sotiriou, f(R) gravity and scalar-tensor theory. Class. Quant. Grav. 23, 5117–5128 (2006). arXiv:gr-qc/0604028
- T.P. Sotiriou, Curvature scalar instability in f(R) gravity. Phys. Lett. B 645, 389–392 (2007). arXiv:gr-qc/0611107
- S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed - up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004). arXiv:astro-ph/0306438
- B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)
- L. Amendola, D. Polarski, S. Tsujikawa, Are f(R) dark energy models cosmologically viable? Phys. Rev. Lett. 98, 131302 (2007). arXiv:astro-ph/0603703
- L. Amendola, D. Polarski, S. Tsujikawa, Power-laws f(R) theories are cosmologically unacceptable. Int. J. Mod. Phys. D 16, 1555–1561 (2007). arXiv:astro-ph/0605384
- L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D 75, 083504 (2007). arXiv:gr-qc/0612180
- W. Hu, I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests. Phys. Rev. D 76, 064004 (2007). arXiv:0705.1158
- S. Nojiri, S.D. Odintsov, Modified f(R) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe. Phys. Rev. D 74, 086005 (2006). arXiv:hep-th/0608008
- S. Nojiri, S.D. Odintsov, Modified gravity and its reconstruction from the universe expansion history. J. Phys. Conf. Ser. 66, 012005 (2007). arXiv:hep-th/0611071
- J.D. Evans, L.M.H. Hall, P. Caillol, Standard cosmological evolution in a wide range of f(R) models. Phys. Rev. D 77, 083514 (2008). arXiv:0711.3695
- A. de la Cruz-Dombriz, A. Dobado, A f(R) gravity without cosmological constant. Phys. Rev. D 74, 087501 (2006). arXiv:gr-qc/0607118
- P.K.S. Dunsby, E. Elizalde, R. Goswami, S. Odintsov, D.S. Gomez, On the LCDM Universe in f(R) gravity. Phys. Rev. D 82, 023519 (2010). arXiv:1005.2205
- B.S. DeWitt, Dynamical theory of groups and fields. Conf. Proc. C 630701, 585–820 (1964). ([Les Houches Lect. Notes 13, 585 (1964)])
- G.J. Olmo, Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D 20, 413–462 (2011). arXiv:1101.3864
- T.P. Sotiriou, S. Liberati, Metric-affine f(R) theories of gravity. Ann. Phys. 322, 935–966 (2007). arXiv:gr-qc/0604006
- T. Chiba, 1/R gravity and scalar - tensor gravity. Phys. Lett. B 575, 1–3 (2003). arXiv:astro-ph/0307338
- J. O’Hanlon, Mach’s principle and a new gauge freedom in Brans-Dicke theory. J. Phys. A 5, 803–811 (1972)
- P. Teyssandier, P. Tourrenc, The Cauchy problem for the $$R+R**2$$ theories of gravity without torsion. J. Math. Phys. 24, 2793 (1983)
- D. Wands, Extended gravity theories and the Einstein-Hilbert action. Class. Quant. Grav. 11, 269–280 (1994). arXiv:gr-qc/9307034
- R. Lazkoz, M. Ortiz-Baños, V. Salzano, $$f(R)$$ gravity modifications: from the action to the data. Eur. Phys. J. C 78(3), 213 (2018). arXiv:1803.05638
- S. Basilakos, S. Nesseris, Conjoined constraints on modified gravity from the expansion history and cosmic growth. Phys. Rev. D 96(6), 063517 (2017). arXiv:1705.08797
- L. Jaime, M. Salgado, L. Patino, Cosmology in $$\cal{f}$$(R) exponential gravity. Springer Proc. Phys. 157, 363–371 (2014). arXiv:1211.0015
- V. Miranda, S.E. Joras, I. Waga, M. Quartin, Viable Singularity-Free f(R) Gravity Without a Cosmological Constant. Phys. Rev. Lett. 102, 221101 (2009). arXiv:0905.1941
- T. Chiba, T.L. Smith, A.L. Erickcek, Solar System constraints to general f(R) gravity. Phys. Rev. D 75, 124014 (2007). arXiv:astro-ph/0611867
- J. Khoury, A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004). arXiv:astro-ph/0309300
- L.M. Sokolowski, Stability of a metric f(R) gravity theory implies the Newtonian limit. Acta Phys. Polon. B 39, 2879–2901 (2008). arXiv:0810.2554
- S.A. Appleby, R.A. Battye, A.A. Starobinsky, Curing singularities in cosmological evolution of F(R) gravity. JCAP 1006, 005 (2010). arXiv:0909.1737
- J.M. Cline, S. Jeon, G.D. Moore, The Phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004). arXiv:hep-ph/0311312
- H. Nariai, Gravitational instability of regular model-universes in a modified theory of general relativity. Prog. Theor. Phys. 49, 165–180 (1973)
- V.T. Gurovich, A.A. Starobinsky, Quantum effects and regular cosmological models. Sov. Phys. JETP 50, 844–852 (1979). [Zh. Eksp. Teor. Fiz. 77, 1683 (1979)]
- A.D. Dolgov, M. Kawasaki, Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1–4 (2003). arXiv:astro-ph/0307285
- V. Faraoni, Matter instability in modified gravity. Phys. Rev. D 74, 104017 (2006). arXiv:astro-ph/0610734
- V. Faraoni, de Sitter space and the equivalence between f(R) and scalar-tensor gravity. Phys. Rev. D 75, 067302 (2007). arXiv:gr-qc/0703044
- V. Faraoni, f(R) gravity: successes and challenges, in 18th SIGRAV Conference Cosenza, Italy, September 22-25 (2008). arXiv:0810.2602
- A.V. Frolov, A singularity problem with f(R) dark energy. Phys. Rev. Lett. 101, 061103 (2008). arXiv:0803.2500
- S.A. Appleby, R.A. Battye, Do consistent $$F(R)$$ models mimic General Relativity plus $$\Lambda $$? Phys. Lett. B 654, 7–12 (2007). arXiv:0705.3199
- A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157–163 (2007). arXiv:0706.2041
- S. Tsujikawa, Observational signatures of $$f(R)$$ dark energy models that satisfy cosmological and local gravity constraints. Phys. Rev. D 77, 023507 (2008). arXiv:0709.1391
- L.G. Jaime, L. Patino, M. Salgado, f(R) cosmology revisited. arXiv:1206.1642
- J.M. Ezquiaga, M. Zumalacárregui, Dark energy after GW170817: dead ends and the road ahead. Phys. Rev. Lett. 119(25), 251304 (2017). arXiv:1710.05901
- P. Creminelli, F. Vernizzi, Dark energy after GW170817 and GRB170817A. Phys. Rev. Lett. 119(25), 251302 (2017). arXiv:1710.05877
- P. Zhang, Testing $$f(R)$$ gravity against the large scale structure of the universe. Phys. Rev. D 73, 123504 (2006). arXiv:astro-ph/0511218
- B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Reconstruction of a scalar tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000). arXiv:gr-qc/0001066
- G. Esposito-Farese, D. Polarski, Scalar tensor gravity in an accelerating universe. Phys. Rev. D 63, 063504 (2001). arXiv:gr-qc/0009034
- S. Tsujikawa, Matter density perturbations and effective gravitational constant in modified gravity models of dark energy. Phys. Rev. D 76, 023514 (2007). arXiv:0705.1032
- R. Bean, D. Bernat, L. Pogosian, A. Silvestri, M. Trodden, Dynamics of linear perturbations in f(R) gravity. Phys. Rev. D 75, 064020 (2007). arXiv:astro-ph/0611321
- A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D 77, 123515 (2008). arXiv:0802.2999
- M. Salgado, The Cauchy problem of scalar tensor theories of gravity. Class. Quant. Grav. 23, 4719–4742 (2006). arXiv:gr-qc/0509001
- J. Ehlers, P. Geren, R.K. Sachs, Isotropic solutions of the Einstein-Liouville equations. J. Math. Phys. 9, 1344–1349 (1968)
- S.J. Stoeger, R. William, R. Maartens, G.F.R. Ellis, proving almost homogeneity of the universe: an almost Ehlers-Geren-Sachs theorem. Astrophys. J. 443, 1 (1995)
- C.A. Clarkson, A.A. Coley, E.S.D. O’Neill, The Cosmic microwave background and scalar tensor theories of gravity. Phys. Rev. D 64, 063510 (2001). arXiv:gr-qc/0105026
- R. Maartens, D.R. Taylor, Fluid dynamics in higher order gravity. Gen. Rel. Grav. 26, 599–613 (1994)
- G.F.R. Ellis, H. van Elst, Cosmological models: cargese lectures. NATO Sci. Ser. C 541(1999), 1–116 (1998). arXiv:gr-qc/9812046
- J. Ehlers, Contributions to the relativistic mechanics of continuous media. Gen. Rel. Grav. 25, 1225–1266 (1993). ([Abh. Akad. Wiss. Lit. Mainz. Nat. Kl. 11, 793 (1961)])
- R. Maartens, Linearization instability of gravity waves? Phys. Rev. D 55, 463–467 (1997). arXiv:astro-ph/9609198
- S. Carloni, A. Troisi, P.K.S. Dunsby, Some remarks on the dynamical systems approach to fourth order gravity. Gen. Rel. Grav. 41, 1757–1776 (2009). arXiv:0706.0452
- S. Carloni, P.K.S. Dunsby, A. Troisi, The Evolution of density perturbations in f(R) gravity. Phys. Rev. D 77, 024024 (2008). arXiv:0707.0106
- A. Abebe, A. de la Cruz-Dombriz, P.K.S. Dunsby, Large scale structure constraints for a class of f(R) theories of gravity. Phys. Rev. D 88, 004050 (2013). arXiv:1304.3462
- A. Abebe, M. Abdelwahab, A. de la Cruz-Dombriz, P.K.S. Dunsby, Covariant gauge-invariant perturbations in multifluid f(R) gravity. Class. Quant. Grav. 29, 135011 (2012). arXiv:1110.1191
- H. Kodama, M. Sasaki, Cosmological Perturbation Theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)
- A. de la Cruz-Dombriz, P.K.S. Dunsby, V.C. Busti, S. Kandhai, On tidal forces in f(R) theories of gravity. Phys. Rev. D 89(6), 064029 (2014). arXiv:1312.2022
- Á. de la Cruz-Dombriz, P.K.S. Dunsby, S. Kandhai, D. Sáez-Gómez, Theoretical and observational constraints of viable f(R) theories of gravity. Phys. Rev. D 93(8), 084016 (2016). arXiv:1511.00102
- F.D. Albareti, J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, On the non-attractive character of gravity in f(R) theories. JCAP 1307, 009 (2013). arXiv:1212.4781
- F.D. Albareti, J.A.R. Cembranos, A. de la Cruz-Dombriz, Focusing of geodesic congruences in an accelerated expanding Universe. JCAP 1212, 020 (2012). arXiv:1208.4201