Aproximación numérica de las ecuaciones de Navier-Stokes mediante métodos de doble mallaCotas de error y estimaciones a posteriori

  1. Durango, Francisco
Dirigida por:
  1. Julia Novo Martín Director/a

Universidad de defensa: Universidad Autónoma de Madrid

Fecha de defensa: 19 de mayo de 2022

Tribunal:
  1. Juan Bosco García Archilla Presidente/a
  2. Carlos Mora Corral Secretario/a
  3. Francisco Javier de Frutos Baraja Vocal

Tipo: Tesis

Resumen

A novel approach to approximate the evolutionary Navier-Stokes equations by means of a two grid mixed finite element post processed method based on a Newton-types tepis an alyzed.This method improves in one unit the rate of convergence of the plain Galerk in approximation with an egligible added computational cost.Later,this method is applied to derive an aposteriori error estimator which reduces the aposteriori error estimation of the non linea revolutionary Navier-Stokes equations to the estimation of asteady linearized Newton-type problem. Finally,arealbi-parametric family of post processed methods is introduced as a generalization of other previous post processed methods: the Stokes, Oseen and Newton based methods