Effect of exercise in the recovery process after the inflammation process caused by coronavirus

  1. Alfredo Córdova Martínez 1
  2. Daniel Pérez Valdecantos 1
  3. Alberto Caballero García 1
  4. José Manuel Sarabia Marin 2
  5. Enrique Roche Collado 2
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  2. 2 Universidad Miguel Hernández de Elche
    info

    Universidad Miguel Hernández de Elche

    Elche, España

    ROR https://ror.org/01azzms13

Revista:
Journal of Human Sport and Exercise: JHSE

ISSN: 1988-5202

Ano de publicación: 2023

Volume: 18

Número: 1

Páxinas: 83-96

Tipo: Artigo

DOI: 10.14198/JHSE.2023.181.08 DIALNET GOOGLE SCHOLAR lock_openRUA editor

Outras publicacións en: Journal of Human Sport and Exercise: JHSE

Obxectivos de Desenvolvemento Sustentable

Resumo

Coronavirus (SARS-CoV-2 - COVID-19) disease causes severe acute respiratory syndrome. During infection, activation of macrophages and pro-inflammatory granulocytes produces cell damage, inducing lung inflammation that leads to the characteristic symptoms of fever, cough, fibrosis, and high increase in pro-inflammatory cytokine levels. In general, during the inflammatory process and infection by coronavirus, cytokines are elevated, particularly IL-1, 6 and 12, TNF-α, and TGF-β. In addition, patients with complications and lethal prognosis present increased serum levels of IF-I and γ compared to healthy individuals or patients with moderate symptoms. On the other hand, it is known that physical activity favours an adaptation of the immune system function. In this context, we suggest that appropriate exercise programs could improve recovery of people who have suffered from COVID-19 disease, improving the quality of life and reinforcing the protection against future infections. The immunomodulatory properties of exercise and physical activity could act as prevention tools for different chronic diseases in healthy individuals and complement therapeutic tools in sick patients. Nevertheless, exercise must be adequate both in time and intensity, taking into account the patient's clinical situation as well as their previous physical activity.

Referencias bibliográficas

  • Adams, E. R., Ainsworth, M., Anand, R., Andersson, M. I., Auckland, K., Baillie, J. K., … Whitehouse, J. (2020). Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. MedRxiv. https://doi.org/10.1101/2020.04.15.20066407
  • Al-Shaibani, A. (2020). Epidemiology of the domestic and repatriation (Covid-19) Infection in Al Najaf province, Iraq. Journal of the Faculty of Medicine of Bagdad, 62, 13-19. https://doi.org/10.32007/jfacmedbagdad.621.21738
  • Algaissi, A., Alfaleh, M. A., Hala, S., Abujamel, T. S., Alamri, S. S., Almahboud, S. A., … Hashem, A. M. (2020). SARS-CoV-2 S1 and N-based serological assays reveal rapid seroconversion and induction of specific antibody response in COVID-19 patients. Scientific Reports, 10, 16561. https://doi.org/10.1038/s41598-020-73491-5
  • Allen, J., Sun, Y., & Woods, J. A. (2015). Exercise and the regulation of inflammatory responses. Progress in Molecular Biology and Translational Science, 135, 337-354. https://doi.org/10.1016/bs.pmbts.2015.07.003
  • Amanat, F., & Krammer, F. (2020). SARS-CoV-2 vaccines: Status Report. Immunity, 52, 583-589. https://doi.org/10.1016/j.immuni.2020.03.007
  • Baumann, H., & Gauldie J. (1994). The acute phase response. Immunology Today, 15, 74-80. https://doi.org/10.1016/0167-5699(94)90137-6
  • Billiau, A. (1996). Interferon-γ: biology and role in pathogenesis. Advances in Immunology, 62, 61-130. https://doi.org/10.1016/S0065-2776(08)60428-9
  • Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens, 6, e1000863. https://doi.org/10.1371/journal.ppat.1000863
  • Braun, J., Loyal, L., Frentsch, M., Wendisch, D., Georg, P., Kurth, F., … Thiel, A. (2020). Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. Nature, 587, 270-274. https://doi.org/10.1038/s41586-020-2598-9
  • Brawner, C. A, Ehrman, J. K., Bole, S., Kerrigan, D. J., Parikh, S. S., Lewis, B. K., … Keteyian, S. J. (2019). Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clinic Proceedings, 96, 32-39. https://doi.org/10.1016/j.mayocp.2020.10.003
  • Chang, Y. J., Kim, H. Y., Albacker, L. A., Baumgarth, N., McKenzie, A. N., Smith, D. E., … Umetsu, D. T. (2011). Innate lymphoid cells mediateinfluenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunology, 12, 631-638. https://doi.org/10.1038/ni.2045
  • Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. K., & Perlman, S. (2014). Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. Journal of Virology, 88, 11034-11044. https://doi.org/10.1128/JVI.01505-14
  • Channappanavar R., Fehr, A. R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D. K., & Perlman, S. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host and Microbe, 19, 181-193. https://doi.org/10.1016/j.chom.2016.01.007
  • Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology, 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
  • Cordova, A., Martin, J. F., Reyes, E., & Alvarez-Mon, M. (2004). Protection against muscle damage in competitive sports players: the effect of the immunomodulator AM3. Journal of Sports Sciences, 22, 827-833. https://doi.org/10.1080/02640410410001716742
  • Cordova, A., Monserrat, J., Villa, G., Reyes, E., & Soto, M. A. (2006). Effects of AM3 (Inmunoferon) on increased serum concentrations of interleukin-6 and tumour necrosis factor receptors I and II in cyclists. Journal of Sports Sciences, 24, 565-573. https://doi.org/10.1080/02640410500141158
  • Córdova A., Martorell M., Sureda A., Tur J. A., Pons A. Changes in Circulating Cytokines and Markers of Muscle Damage in Elite Cyclists during a Multi-stage Competition Clinical Physiology Function Imaging. 2015;35:351-358. https://doi.org/10.1111/cpf.12170
  • Cordova, A., Sureda, A., Pons, A., & Alvarez-Mon, M. (2015). Modulation of TNF-alpha, TNF-alpha receptors and IL-6 after treatment with AM3 in professional cyclists. Journal of Sports Medicine and Physical Fitness, 55, 345-351.
  • Deng X., & Baker, S. C. (2018). An "old" protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defences. Virology, 517, 157-163. https://doi.org/10.1016/j.virol.2017.12.024
  • Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., … Chen, Y. (2020). Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. https://doi.org/10.3389/fimmu.2020.00827
  • Germolec, D. R., Frawley, R. P., & Evans, E. (2010). Markers of inflammation. Methods in Molecular Biology, 598, 53-73. https://doi.org/10.1007/978-1-60761-401-2_5
  • Giamarellos-Bourboulis, E. J., Netea, M. G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., … Koutsoukou, A. (2020). Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host and Microbe, 27, 992-1000.e3. https://doi.org/10.1016/j.chom.2020.04.009
  • Gleeson, M., Pyne, D. B., Austin, J. P., Lynn Francis, J., Clancy, R. L., McDonald, W. A., & Fricker, P. A. (2002). Epstein_Barr virus reactivation and upper-respiratory illness in elite swimmers. Medicine and Science in Sports and Exercise, 34, 411-417. https://doi.org/10.1097/00005768-200203000-00005
  • Green, S. J., Scheller, L. F., Marletta, M. A., Seguin, M. C., Klotz, F. W., Slayter, M., … Nacy, C. A. (1994). Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunology Letters, 43, 87-94. https://doi.org/10.1016/0165-2478(94)00158-8
  • Guo, C., Li, B., Ma, H., Wang, X., Cai, P., Yu, Q., … Qu, K. (2020). Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. BioRxiv. https://doi.org/10.1101/2020.04.08.029769
  • Hackbart, M., Deng, X., & Baker, S. C. (2020). Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proceedings of the National Academy of Sciences of the United States of America, 117, 8094-8103. https://doi.org/10.1073/pnas.1921485117
  • Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Pere, H., … Terrier, B. (2020). Impaired type I interferon activity and exacerbated inflammatory responses in severe Covid-19 patients. Science, 369, 718-724. https://doi.org/10.1126/science.abc6027
  • Hu, L., Chen, S., Fu, Y., Gao, Z., Long, H., Ren, H.-W., … Deng, Y. (2020). Risk factors associated with clinical outcomes in 323 coronavirus disease 2019 (COVID-19) hospitalized patients in Wuhan, China. Clinical Infectious Diseases, 71, 2089-2098. https://doi.org/10.1093/cid/ciaa539
  • Huang, A.T., Garcia-Carreras, B., Hitchings, M. D. T., Yang, B., Katzelnick, L., Rattigan, S. M., … Cummings, D. A. T. (2020). A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. MedRxiv. https://doi.org/10.1101/2020.04.14.20065771
  • Ju, B., Zhang, Q., Ge, X., Wang, R., Sun, J., Ge, X., … Song, S. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584, 115-119. https://doi.org/10.1038/s41586-020-2380-z
  • Kawanishi, N., Mizokami, T., Niihara, H., Yada, K., & Suzuki, K. (2016). Neutrophil depletion attenuates muscle injury after exhaustive exercise. Medicine and Science in Sports and Exercise, 48, 1917-1924. https://doi.org/10.1249/MSS.0000000000000980
  • Kammuller, M. E. (1995). Recombinant human interleukin-6: safety issues of a pleiotropic growth factor. Toxicology, 105, 91-107. https://doi.org/10.1016/0300-483X(95)03128-3
  • Kang, S., Brown, H. M., & Hwang, S. (2018). Direct antiviral mechanisms of interferon-gamma. Immune Network, 18, e33. https://doi.org/10.4110/in.2018.18.e33
  • Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., … Snijder, E.J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biology, 6, e226. https://doi.org/10.1371/journal.pbio.0060226
  • Krüger, K., Mooren, F.-C.., & Pilat, C. (2016). The immunomodulatory effects of physical activity. Current Pharmaceutical Design, 22, 3730-3748. https://doi.org/10.2174/1381612822666160322145107
  • Lee, A. J., & Ashkar, A. A. (2018). The dual nature of type I and type II interferons. Frontiers in Immunology, 9, 2061. https://doi.org/10.3389/fimmu.2018.02061
  • Lee, D. W., Gardner, R., Porter, D. L. Louis, C. U., Ahmed, N., Jensen, M, … Mackall, C. L., (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124, 188-195. https://doi.org/10.1182/blood-2014-05-552729
  • Li, C. K.-F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., … Xu, X.-N. (2008). T cell responses to whole SARS coronavirus in humans. Journal of Immunology, 181, 5490-5500. https://doi.org/10.4049/jimmunol.181.8.5490
  • Liu, W., Fontanet, A., Zhang, P. H., Zhan, L., Xin, Z. T., Baril, L., … Cao, W.C. (2006). Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. Journal of Infectious Diseases, 193, 792-795. https://doi.org/10.1086/500469
  • Liu, Q., Zhou, Y. H., & Yang, Z. Q. (2016). The cytokine storm of severe influenza and development of immunomodulatory therapy. Cellular and Molecular Immunology, 13, 3-10. https://doi.org/10.1038/cmi.2015.74
  • Lowder, T., Padgett, D. A., & Woods J. A. (2006). Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exercise Immunology Review, 12, 97-111.
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Mahdi, B.M. (2020). COVID-19 type III hypersensitivity reaction. Medical Hypotheses, 140, 109763. https://doi.org/10.1016/j.mehy.2020.109763
  • McNab, F., Mayer-Barber, K., Sher, A., Wack, A., & O'Garra, A. (2015). Type I interferons in infectious disease. Nature Reviews. Immunology, 15, 87-103. https://doi.org/10.1038/nri3787
  • Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH Across Speciality Collaboration, UK. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395, 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  • Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews. Immunology, 20, 355-362. https://doi.org/10.1038/s41577-020-0331-4
  • Ng, O.-W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., … Tan,Y.-J. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 34, 2008-2014. https://doi.org/10.1016/j.vaccine.2016.02.063
  • Nie, S., Zhao, X., Zhao, K., Zhang, Z. [Zhaohui], Zhang, Z. [Zhentao], & Zhang, Z. [Zhan] (2020). Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a retrospective study. MedRxiv. https://doi.org/10.1101/2020.03.24.20042283
  • Nieman, D. C. (1997). Immune response to heavy exertion. Journal of Applied Physiology. 82, 1385-1394. https://doi.org/10.1152/jappl.1997.82.5.1385
  • Nieman, D. C., & Nehlsen-Cannarella, S. L. (1992). Exercise and infection. In R. R. Watson & M. Eisinger (Eds.), Exercise and disease (pp. 121-148). Boca Raton, Florida, USA: CRC Press. https://doi.org/10.1201/9781003068853-8
  • Okba, N. M. A., Müller, M. A., Li, W., Wang, C., GeurtsvanKessel, C. H., Corman,V. M., … Haagmans, B. L. (2020). Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases, 26, 1478-1488. https://doi.org/10.3201/eid2607.200841
  • Ozemek, C., Lavie, C. J., & Rognmo, Ø. (2019). Global physical activity levels-Need for intervention. Progress in Cardiovascular Disease, 62, 102-107. https://doi.org/10.1016/j.pcad.2019.02.004
  • Pathan, N., Hemingway, C. A., Alizadeh, A. A., Stephens, A. C., Boldrick, J. C., Oragui, E. E., … Levin, M. (2004). Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet, 363, 203-209. https://doi.org/10.1016/S0140-6736(03)15326-3
  • Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: regulation, integration, and adaptation. Physiological Reviews, 80, 1055-1081. https://doi.org/10.1152/physrev.2000.80.3.1055
  • Polidoro, R. B., Hagan, R. S., de Santis Santiago, R., & Schmidt, N. W. (2020). Overview: Systemic inflammatory response derived from lung injury caused by SARS-CoV-2 infection explains severe outcomes in COVID-19. Frontiers in Immunology, 11, 1626. https://doi.org/10.3389/fimmu.2020.01626
  • Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., … Tian, D.-S. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases, 71, 762-768. https://doi.org/10.1093/cid/ciaa248
  • Rehwinkel, J., & Gack, M. U. (2020). RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews. Immunology, 20, 537-551. https://doi.org/10.1038/s41577-020-0288-3
  • Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433
  • Ruggiero, V., Tavernier, J., Fiers, W., & Baglioni, C. (1986). Induction of the synthesis of tumor necrosis factor receptors by interferon-gamma. Journal of Immunology, 136, 2445-2450.
  • Sarzi-Puttini, P., Giorgi, V., Sirotti, S., Marotto, D., Ardizzone, S., Rizzardini, G, … Galli, M. (2020). COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clinical and Experimental Rheumatology, 38, 337-342. https://doi.org/10.1016/j.autrev.2020.102574
  • Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D.A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75, 163-189. https://doi.org/10.1189/jlb.0603252
  • Shaw, D. M., Merien, F., Braakhuis, A., & Dulson, D. (2018). T-cells and their cytokine production: the anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine, 104, 136-142. https://doi.org/10.1016/j.cyto.2017.10.001
  • Shephard, R. J., Verde, T. J., Thomas, S. G., & Shek, P. (1991). Physical activity and the immune system. Canadian Journal of Sport Sciences, 16, 163-185.
  • Shiow, L. R., Rosen, D. B., Brdicková, N., Xu, Y., An, J., Lanier, L. L., … Matloubian, M. (2006). CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 440, 540-544. https://doi.org/10.1038/nature04606
  • Song, C.-Y., Xu, J., He, J.-Q., & Lu, Y.-Q. (2020). COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients. MedRxiv. https://doi.org/10.1101/2020.03.05.20031906
  • Sureda, A., Ferrer, M. D., Tauler, P., Maestre, I., Aguiló, A., Cordova, A, … Pons, A. (2007). Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radical Research, 41, 874-883. https://doi.org/10.1080/10715760701416459
  • Surkina, I., Danilenko, S., Dudov, N., Gotovtseva, E. P., Koptelov, O. V., Kostina, L. V., … Vorobiev, A. A. The role of the immune system in processes of adaptation to stress in sportsmen. Clinical Science, 87, 22. https://doi.org/10.1042/cs087s022
  • Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K., & Sugawara, K. (2002). Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise Immunology Review, 8, 6-48.
  • Tanaka, T., Narazaki, M., & Kishimoto, T. (2016). Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 8, 959-970. https://doi.org/10.2217/imt-2016-0020
  • Taylor, A., Foo, S.-S., Bruzzone, R., Dinh, L. V., King, N. J. C., & Mahalingam, S. (2015). Fc receptors in antibody-dependent enhancement of viral infections. Immunological Reviews, 268, 340-364. https://doi.org/10.1111/imr.12367
  • Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E.,… Kedzierska, K. (2020) Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine, 26, 453-455. https://doi.org/10.1038/s41591-020-0819-2
  • To, K. K.-W., Tsang, O. T.-Y., Leung, W.-S., Tam, A. R., Wu, T.-C., Lung, D. C., … Yuen, K.-Y. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet. Infectious Diseases, 20, 565-574. https://doi.org/10.1016/S1473-3099(20)30196-1
  • Velikova, T. V., Kotsev, S. V., Georgiev, D. S., & Batselova, H. M. (2020). Immunological aspects of COVID-19: What we do know? World Journal of Biological Chemistry, 11, 14-29. https://doi.org/10.4331/wjbc.v11.i2.14
  • Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., … Spits, H. (2018). Innate Lymphoid Cells: 10 years on. Cell, 174, 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017
  • Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., … Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise Immunology Review, 17, 6-63.
  • Wang, D., Hu, B., Hu, C., Zhu, F., Lui, X., Zhang, J., …Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323, 1061-1069. https://doi.org/10.1001/jama.2020.1585
  • Wang, T., Zhang, X., & Li, J. J. (2002). The role of NF-κB in the regulation of cell stress responses. International Immunopharmacology, 2, 1509-1520. https://doi.org/10.1016/S1567-5769(02)00058-9
  • Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martinez-Colon, G. J., McKechnie, J. L., … Blish, C. A. (2020). A single-cell atlas of the peripheral immune response in patients with severe COVID19. Nature Medicine, 26, 1070-1076. https://doi.org/10.1038/s41591-020-0944-y
  • Zhang, J., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45, 27-37. https://doi.org/10.1097/AIA.0b013e318034194e
  • Zhang, Y., Li, J., Zhan, Y., Wu, L., Yu, X., Zhang, W., … Lou, J. (2004). Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infection and Immunity, 72, 4410-4415. https://doi.org/10.1128/IAI.72.8.4410-4415.2004
  • Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W, … Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214-217. https://doi.org/10.1016/j.ijid.2020.01.050
  • Zheng, M., Gao, Y., Wang, G., Song, G., Liu, S., Sun, D., … Tian, Z. (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology, 17, 533-535. https://doi.org/10.1038/s41423-020-0402-2
  • Zheng, M., & Song, L. (2020). Novel antibody epitopes dominate the antigenicityof spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular and Molecular Immunology, 17, 536-538. https://doi.org/10.1038/s41423-020-0385-z
  • Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., … Wei, H. (2020). Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. National Science Review, 7, 998-1002. https://doi.org/10.1093/nsr/nwaa041