Characterization of the shallow subsurface structure across the Carrascoy Fault System (SE Iberian Peninsula) using P-wave tomography and Multichannel Analysis of Surface Waves

  1. Handoyo Handoyo 1
  2. Irene de Felipe Martín
  3. Raquel Martín Banda
  4. Julián García Mayordomo
  5. David Martí 2
  6. José Jesús Martínez Díaz
  7. Juan M. Insua Arévalo
  8. Teresa Teixidó 3
  9. Juan Alcalde 4
  10. Imma Palomeras 5
  11. Ramón Carbonell 4
  1. 1 Institut Teknologi Sumatera
  2. 2 Lithica SCCL
  3. 3 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  4. 4 Geosciences Barcelona (GEO3BCN, CSIC)
  5. 5 Department of Geology, University of Salamanca
Revista:
Geologica acta: an international earth science journal

ISSN: 1695-6133

Año de publicación: 2022

Volumen: 20

Número: 1

Tipo: Artículo

DOI: 10.1344/GEOLOGICAACTA2022.20.9 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Geologica acta: an international earth science journal

Objetivos de desarrollo sostenible

Resumen

The seismicity in the SE Iberian Peninsula is distributed parallel to the coast in a well-developed strike-slip fracture system known as the Eastern Betic Shear Zone (EBSZ). This work focuses on the characterization of the shallow subsurface structure of the Algezares-Casas Nuevas Fault, within the Carrascoy Fault System of the EBSZ. The Carrascoy Fault borders the Guadalentín Depression to the south, which is a densely populated area with extensive agricultural activity. Therefore, this faults system represents a seismic hazard with significant social and economic implications. We have constructed two velocity-depth models based on P-wave tomography and Multichannel Analysis of Surface Waves (MASW) acquired from seismic reflection data. The resulting velocity models have allowed us to interpret the first ~250m depth and have revealed: i) the thickness of the critical zone; ii) the geometry of the Algezares-Casas Nuevas Fault; iii) the depth of the Messinian/Tortonian contact and iv) the presence of blind thrusts and damage zones under the Guadalentín Depression. Our results have also helped us to estimate an apparent vertical slip rate of 0.66±0.06m/ky for the Algezares-Casas Nuevas Fault since 209.1±6.2ka. Our results provide a methodological and backflow protocol to study the shallow subsurface of active faults, complementing previous geological models based on paleoseismological trenches, and can be used to improve the seismic hazard assessment of tectonically active regions around the world

Referencias bibliográficas

  • Adel, M.E., Mohamed, A.S.A., Abu El Ata, F., Abdel Azim, Taha, M.A., 2013. Site-specific shear wave velocity investigation for geotechnical engineering applications using seismic refraction and 2D multi-channel analysis of surface waves, NRIAG Journal of Astronomy and Geophysics, 2(1), 88-101. DOI: 10.1016/j.nrjag.2013.06.012
  • Aki, K., Richards, P.G., 1980. Quantitative seismology: Theory and methods (Vol. 1). San Francisco, W. H. Freeman and Company. 932pp.
  • Alcalde, J., Martí, D., Juhlin, C., Malehmir, A., Sopher, D., Saura, E., Marzán, I., Ayarza, P., Calahorrano, A., Pérez-Estaún, A., Carbonell, R., 2013. 3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain). Solid Earth, 4(2), 481-496. DOI: https://doi.org/10.5194/se4-481-2013
  • Alfaro, P., Delgado, J., Estévez, A., Soria, J.M., Yébenes, A., 2002. Onshore and offshore compressional tectonics in the eastern Betic Cordillera (SE Spain). Marine Geology, 186(3-4), 337-349. DOI: https://doi.org/10.1016/S0025-3227(02)00336-5
  • Amores Lahidalga, R., Hernández-Enrile, J. Martínez-Diaz, J., 2002. Sobre los factores relacionados con la evaluación de la peligrosidad sísmica en la región de Murcia. Madrid (Spain), 2º Congreso Iberoamericano de Ingeniería Sísmica, Asociación Española de Ingeniería Sísmica, 13pp.
  • Amores, R., Hernández-Enrile, J., Martínez-Diaz, J., 2021. Estudio gravimétrico previo aplicado a la identificación de fallas ocultas como fuentes sismogenéticas en la Depresión de Guadalentín (Región de Murcia). Geogaceta, 32, 307-310.
  • Anderson, S.P., Anderson, R.S., Hinckley, E.L.S., Kelly, P., Blum, A., 2011 Exploring weathering and regolith transport controls on critical zone development with models and natural experiments. Applied Geochemistry, 26, S3-S5. DOI: https://doi.org/10.1016/j.apgeochem.2011.03.014
  • Anderson, R.S., 2015. Pinched topography initiates the Critical Zone. Science, 350, 506-507. DOI: 10.1126/science.aad2266
  • Anderson, R.S., Anderson, S.P., Tucker, G.E., 2013. Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone. Earth Surface Processes and Landforms, 38, 299-316. DOI: 10.1002/esp.3330
  • Ando, R., Yamashita, T., 2007. Effects of mesoscopic-scale fault structure on dynamic earthquake ruptures: Dynamic formation of geometrical complexity of earthquake faults. Journal of Geophysical Research Solid Earth, 112, B09303. DOI: 10.1029/2006JB004612
  • Anselmetti, F., Eberli, G., 1993. Controls on sonic velocity in carbonates. Pure and Applied Geophysics, 141(2), 287-323.
  • Argus, D.F., Gordon, R.G., Heflin, M.B., Ma, C., Eanes, R., Willis, P., Peltier, W.R., Owen, S.E., 2010. The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophysical Journal International, 180(3), 913-960. DOI: https://doi.org/10.1111/j.1365-246X.2009.04463.x
  • Banda, E., Ansorge, J., 1980. Crustal structure under the central and eastern part of the Betic Cordillera. Geophysical Journal International, 63, 515-532. DOI: 10.1111/j.1365-246x.1980.tb02635.x
  • Befus, K.M., Sheehan, A.F., Leopold, M., Anderson, S.P., Anderson, R.S., 2011. Seismic Constraints on Critical Zone Architecture, Boulder Creek Watershed, Front Range, Colorado. Vadose Zone Journal, 10(3), 915-927. DOI: 10.2136/vzj2010.0108
  • Boness, N.L., Zoback, M.D., 2004, Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA. Geophysical Research Letters, 32, L15S17. DOI: https://doi.org/10.1029/2003GL019020
  • Brown, E.T., 1981. Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. Oxford, Pergamon Press, 211pp.
  • Bruno, P.P., Improta, L., Castiello, A., Villani, F., Montone, P., 2010. The Vallo di Diano Fault System: New Evidence for an Active Range-Bounding Fault in Southern Italy Using Shallow, HighResolution Seismic Profiling. Bulletin of the Seismological Society of America, 100(2), 882-890. DOI: https://doi.org/10.1785/0120090210
  • Budiansky, B., O’Connell, R.J., 1980. Bulk dissipation in heterogeneous media. Solid Earth Geophysics and Geotechnology, New York. American Society of Mechanical Engineers, 42, 1-10.
  • Catchings, R.D., Rymer, M.J., Goldman, M.R., Sickler, R.R., Criley, C.J., 2014. A Method and Example of Seismically Imaging Near‐Surface Fault Zones in Geologically Complex Areas Using Vp, Vs, and their Ratios. Bulletin of the Seismological. Society of America, 104(4), 1989-2006. DOI: https://doi.org/10.1785/0120130294
  • Catchings, R.D., Hernandez, J., Goldman, M.R., Chan, J.H., Sickler, R.R., Olson, B., Criley, C.J., 2020. 2018 U.S. Geological Survey–California Geological Survey fault-imaging surveys across the Hollywood and Santa Monica Faults, Los Angeles County, California. U.S. Geological Survey Open-File Report, 1049, 42pp. DOI: https://doi.org/10.3133/ofr20201049
  • Cohen, J.K., Stockwell, J.W.Jr., 2019 The New SU User´s Manual. Center for Wave Phenomena, Colorado School of Mines. Version 4.6: July 2019, 177pp. Available at: https://nextcloud.seismic-unix.org/index.php/s/wZNoFCfJdXj5iKB
  • Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s Inversion: a practical algorithm for generating smooth models
  • from EM sounding data. Geophysics, 52, 289-300.
  • De Larouzière, F., Montenat, C., Ott O’Estevou, P., Griveaud, P., 1987. Evolution simultanée des basin néogènes en compression et en extension dans un couloir de décrochement: Hinojar et Malarron (Sud Est de l’Espagn). Elf (Aquitaine), Bulletin-Centres de Recherches Exploration-Production, 11, 23-38.
  • De Larouzière, F.D., Bolze, J., Bordet, P., Hernández, J., Montenat, C., Ott d’Estevou, P., 1988. The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics, 152(1-2), 41- 52. DOI: 10.1016/0040-1951(88)90028-5
  • DeFelipe, I., Alcalde, J., Ivandic, M., Martí, D., Ruiz, M., Marzán, I., Diaz, J., Ayarza, P., Palomeras, I., Fernandez-Turiel, J.-L., Molina, C., Bernal, I., Brown, L., Roberts, R., Carbonell, R., 2021. Reassessing the lithosphere: SeisDARE, an open access seismic data repository. Earth System Science Data, 13, 1053-1071. DOI: 10.5194/essd-13-1053-2021
  • deGroot-Hedlin, C., Constable, S., 1990, Occam`s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55, 1613-1624. DOI: http://dx.doi.org/10.1190/1.1442813
  • DeMets, C., Iaffaldano, G., Merkouriev, S., 2015. High-resolution Neogene and Quaternary estimates of nubia-eurasia-north America plate motion. Geophysical Journal International, 203, 416-427. DOI: 10.1093/gji/ggv277
  • Eberhart-Phillips, D., Michael, A.J., 1998, Seismotectonics of the Loma Prieta, California, region determined from threedimensional Vp, Vp/Vs, and seismicity. Journal of Geophysical Research, 103, 21099-21120.
  • Eberli, G.P., Baechle, G.T., Anselmetti, F.S., Incze, M.L., 2003. Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge, 22, 654-660. DOI: 10.1190/1.1599691
  • Echeverria, A., Khazaradze, G., Garate, J., Asensio, A., Masana, E., Suriñach, E., 2011. Present-day GPS crustal deformation
  • rates in the Eastern Betics (SE Spain). Geophysical Research Abstracts 13, EGU 2011, EGU General Assembly 2011, Viena, 8005.
  • Echeverria, A., Khazaradze, G., Asensio, E., Gárate, J., Dávila, J. M., Suriñach, E., 2013. Crustal deformation in eastern Betics
  • from CuaTeNeo GPS network. Tectonophysics, 608, 600-612.
  • Feenstra, J., Thurber, C., Townend, J., Roecker, S., Bannister, S., Boese, C., Lord, N., Bourguignon, S., Eberhart-Phillips, D., 2016. Microseismicity and P–wave tomography of the central Alpine Fault, New Zealand. New Zealand Journal of Geology and Geophysics, 59(4), 483-495. DOI: 10.1080/00288306.2016.1182561
  • Ferrater, M., Ortuño, M., Masana, E., Martínez-Díaz, J.J., Pallàs, R., Perea, H., 2017. Lateral slip rate of Alhama de Murcia fault
  • (SE Iberian Peninsula) based on a morphotectonic analysis: Comparison with paleoseismological data. Quaternary International, 451, 87-100. DOI: http://dx.doi.org/10.1016/j.quaint.2017.02.018
  • Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y., Socco, V., 2018. Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16(6), 2367-2420.
  • Francisca, F.M., Bogado, G.O., 2019. Weathering effect on the small strains elastic properties of a residual soil. Geotechnical
  • and Geological Engineering, 37, 4031-4041. DOI: https://doi.org/10.1007/s10706-019-00891-4
  • García-Mayordomo, J., 2005. Caracterización y analisis de la peligrosidad sismica en el sureste de España. Dissertation Thesis. Madrid (Spain), Universidad Complutense de Madrid, 379pp.
  • García-Mayordomo, J., Gaspar-Escribano, J.M., Benito, B., 2007. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard. Journal of Seismology 11, 453-471. DOI: 10.1007/s10950-007-9064-0
  • García-Mayordomo, J., Insúa-Arévalo, J.M., Martínez-Díaz, J.J., Jiménez-Díaz, A., Alvárez-Gomez, J.A., Pérez-López, R., Martín-Banda, R., Martín-Alfageme1, S., Álvarez-Gómez, J.A., Rodríguez-Peces, M., Pérez-López, R., RodríguezPascua, M.A., Masana4, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E.S., Cabral, J., QAFI Compilers., 2012. The Quaternary Active Faults Database of Iberia v 0.1. Journal of Iberian Geology, 38, 285-302. DOI: 10.5209/rev_JIGE.2012.v38.n1.39219
  • García-Mayordomo, J., Martín-Banda, R., Insua-Arévalo, J.M., Álvarez-Gómez, J.A., Martínez-Díaz, J.J., Cabral, J., 2017. Active fault databases: building a bridge between earthquake geologists and seismic hazard practitioners, the case of the QAFI v.3 database Natural Hazards and Earth System Sciences, 17, 1-23. DOI: 10.5194/nhess-2017-128
  • Gaspar-Escribano, J.M., Benito, B., García-Mayordomo, J., 2008. Hazard-consistent response spectra in the Region of Murcia
  • (Southeast Spain): Comparison to earthquake-resistant provisions. Bulletin of Earthquake Engineering, 6, 179-196. DOI: 10.1007/s10518-007-9051-4
  • Gaždová, R., Kolínský, P., Vilhelm, J., Valenta, J., 2015. Combining surface waves and common methods for shallow geophysical survey. Near Surface Geophysics, 13(1), 19-32. DOI: 10.3997/1873-0604.2014039
  • Gebrande, H., Miller, H., 1985. Refraktionsseismik. Angewandte Geowissenschaften, II, 226-260.
  • Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., Chartier, T., 2020. Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain). Frontiers Earth Science, 8, 579398. DOI: 10.3389/feart.2020.579398
  • Gràcia, E., Pallàs, R., Soto, J.I., Comas, M., Moreno, X., Masana, E., Santanach, P., Diez, S., García, M., Dañobeitia, J., 2006. Active faulting offshore SE Spain (Alboran Sea): Implications for Earthquake hazard assessment in the south Iberian margin. Earth and Planetary Science Letters, 241, 734-749. DOI: https://doi.org/10.1016/j.epsl.2005.11.009
  • Handoyo, H., Alcalde, J., DeFelipe, I., Palomeras, I., Martín-Banda, R., García-Mayordomo, J., Martí, D., Martínez-Díaz, J.J., InsuaArévalo, J.M., Teixidó, T., Marzán, I., Carbonell, R., 2022. Geophysical Imaging of the Critical Zone along the Eastern Betic Shear Zone (EBSZ), SE Iberian Peninsula. Applied Sciences, 12, 3398. DOI: https://doi.org/10.3390/app12073398
  • Haney, M.M., Qu, L., 2010. Rayleigh wave dispersion curve inversion: Occam versus L1 Norm. Society of Exploration Geophysicists, Denver SEG Annual Meeting, Expanded Abstracts, 1871-1876. DOI: 10.1190/1.3513206
  • Iacopini, D., Butler, R.W.H., Purves, S., McArdle, N., De Freslon, N., 2016. Exploring the seismic expression of fault zones in 3D seismic volumes. Journal of Structural Geology, 89, 54-73. DOI: https://doi.org/10.1016/j.jsg.2016.05.005
  • Improta, L., Bruno, P.P., 2007. Combining seismic reflection with multifold wideaperture profiling: An effective strategy for high-resolution shallow imaging of active faults. Geophysical Research Letter, 34, L20310. DOI: 10.1029/2007GL031893
  • Instituto Geológico y Minero de España (IGME), 2015. QAFI v.3: Quaternary Faults Database of Iberia. Instituto Geologico y Minero de España (IGME), Last accessed: April 2020. Website: http://info.igme.es/QAFI
  • Instituto Geográfico Nacional-Universidad Politécnica de Madrid (IGN-UPM), 2013. Actualización de mapas de peligrosidad
  • sísmica de España 2012. Centro Nacional de Información Geográfica, Instituto Geográfico Nacional, 267pp. ISBN: 978-84-416-2685-0
  • Instituto Geográfico Nacional (IGN), 2011. Serie terremoto NE Lorca (Murcia). Madrid, Instituto Geográfico Nacional (IGN). Last accessed: 10 October 2021. Website: http://www.ign.es/web/ign/portal/decimo-aniversario-lorca
  • Ivanov, J., Miller, R.D., Lacombe, P, Johnson, C.D., Lane, J.W.Jr., 2006. Delineating a shallow fault zone and dipping bedrock strata using multichannel analysis of surface waves with a land streamer. Geophysics, 71(5), 39-42. DOI: https://doi.org/10.1190/1.2227521
  • Jerez, F., Leyva, F., García-Tortosa, F. J., Cabra, P., 2015. Geological Map of Spain. Sheet 933-Alcantarilla, scale 1:50.00. Madrid, Instituto Geologico y Minero de España (IGME), 197pp.
  • Kanli, A.I., Tildy, P., Pronay, Z., Pinar, A., Hermann, L., 2006. VS30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophysical Journal International, 165, 223-235. DOI: https://doi.org/10.1111/j.1365-246X.2006.02882.x
  • Key, K., 2009. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2), F9–F20.DOI: http://dx.doi.org/10.1190/1.3058434. Code at: http://marineemlab. ucsd.edu/Projects/Occam/1DCSEM
  • Khazaradze, G., Gárate, J., Suriñach, E., Davila, J.M., Asensio, E., 2008. Crustal deformation in south-eastern Betics from CuaTeNeo GPS network. Geotemas, 10, 1023-1026. DOI: 10.1016/j.tecto.2013.08.020
  • Lai, C.G., Rix, G.J., 1999, Inversion of multi-mode effective dispersion curves. In: Jamiolkowski, M., Lancellotta, R., Lo Presti, D. (eds.). Pre- failure deformation characteristics of geomaterials. Balkema, 411-418.
  • Lai, C.G., Rix, G.J., Foti, S., Roma, V., 2002. Simultaneous measurement and inversion of surface wave dispersion and attenuation curves. Soil Dynamics and Earthquake Engineering, 22, 923-930.
  • Lai, C.G., Foti, S., Rix, G.J., 2005. Propagation of data uncertainty in sur- face wave inversion. Journal of Engineering and Environmental Geophysics, 10, 219-228.
  • Leone, J.D., Holbrook, W.S., Riebe, C.S., Chorover, J., Ferré, T.P.A., Carr, B.J., Callahan, R.P., 2020. Strong slope‐aspect control of regolith thickness by bedrock foliation. Earth Surface Processes and Landforms, 45, 2998-3010. DOI: 10.1002/esp.4947
  • Mansfield, C.S., Cartwright, J.A., 1996. High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth. Journal of Structural Geology, 18(2-3), 249-263.
  • Mari, J.L., 1984. Estimation of static correction for shear-wave profiling using the dispersion properties of Love waves. Geophysics, 49, 1169-1179.
  • Martí, D., Carbonell, R., Tryggvason, A., Escuder, J., Pérez-Estaún, A., 2002. Mapping brittle fracture zones in three dimensions: high resolution traveltime seismic tomography in a granitic pluton. Geophysical Journal International, 149(1), 95-105.
  • Martí, D., Carbonell, R., Escuder-Viruete, J., Pérez-Estaún, A., 2006a. Characterization of a fractured granitic pluton: P-and S-waves’ seismic tomography and uncertainty analysis. Tectonophysics, 422(1-4), 99-114.
  • Martí, D., Escuder-Viruete, J., Carbonell, R., Flecha, I., PérezEstaún, A., 2006b. Fault architecture and related distribution of physical properties in granitic massifs: geological and geophysical methodologies. Journal of Iberian Geology, 32(1), 95-112.
  • Martí, D., Carbonell, R., Flecha, I., Palomeras, I., Font-Capó, J., Vázquez-Suñé, E., Pérez-Estaún, A., 2008. High-resolution seismic characterization in an urban area: Subway tunnel construction in Barcelona, Spain. Geophysics, 73(2), B41-B50.
  • Martí, D., Teixidó, T., Ardanaz, O., Dávila, L., Martínez-Díaz, J.J., Mendes, M., Carbonell, R., 2015. Characterization of the 3D
  • internal structure of the Alhama de Murcia Fault (FAM) in the segments Goñar-Lorca, Lorca-Totana and Totana-Alhama. Dataset INTERGEO, DIGITAL.CSIC, DOI: 10.20350/digitalCSIC/8632
  • Martín-Banda, R., García-Mayordomo, J., Insua-Arévalo, J.M., Salazar, Á.E., Rodríguez-Escudero, E., Álvarez-Gómez, J.A., Medialdea, A., Herrero, M.J., 2016. New insights on the seismogenic potential of the Eastern Betic Shear Zone (SE Iberia): Quaternary activity and paleoseismicity of th SW segment of the Carrascoy Fault Zone. Tectonophysics, 35, 55-75. DOI: 10.1002/2015TC003997
  • Martín-Banda, R., 2020. Segmentación y evolución reciente del Sistema de Fallas de la Sierra de Carrascoy: implicaciones en su potencial sismogénico. Doctoral Thesis. Madrid (Spain), Universidad Complutense de Madrid, 220pp.
  • Martín-Banda, R., Insua-Arévalo, J.M., García-Mayordomo, J., 2021. Slip Rate Variation During the Last -210 ka on a Slow Fault in a Transpressive Regime: The Carrascoy Fault (Eastern Betic Shear Zone, SE Spain). Frontier in Earth Science, 8, 599608. DOI: 10.3389/feart.2020.599608
  • Martínez-Díaz, J.J., 2002. Stress field variety related to fault interaction in a reverse oblique-slip fault: The Alhama de Murcia Fault, Betic Cordillera, Spain. Tectonophys, 356, 291-305. DOI: 10.1016/S0040-1951(02)00400-6
  • Martínez-Díaz, J.J., Bejar-Pizarro, M., Álvarez-Gómez, J.A., Mancilla, F.d.L., Stich, D., Herrera, G., Morales, J., 2012a. Tectonic and seismic implications of an intersegment rupture. Tectonophysics, 546-547, 28–Q17 37. DOI: 10.1016/j.tecto.2012.04.010
  • Martínez-Díaz, J.J., Masana, E., Ortuño, M., 2012b. Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain. Journal of Iberian Geology, 38, 253-270. DOI: 10.5209/rev_JIGE.2012.v38.n1.39218
  • Martínez-Díaz, J.J., Alonso-Henar, J., Insua-Arévalo, J.M., Canora, C., García-Mayordomo, J., Rodríguez-Escudero, E., Álvarez-Gómez, J.A., Ferrater, M., Ortuño, M., Masana, E., 2019. Geological evidences of surface rupture related to a seventeenth century destructive earthquake in Betic Cordillera (SE Spain): constraining the seismic hazard of the Alhama de Murcia fault. Journal of Iberian Geology, 45, 73-86. DOI: https://doi.org/10.1007/s41513-018-0082-2
  • Masana, E., Martínez-Díaz, J.J., Hernández‐Enrile, J.L., Santanach, P., 2004. The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Magrebian region. Journal of Iberian Geology, 109, B01301. DOI: 10.1029/2002JB002359
  • Mattson, A., 2004. Tomographic imaging of late Quaternary faulting, Oquirrh Mountains, Utah. Journal of Geophysical Research, 109, B11310. DOI: 10.1029/2004JB003159
  • Menke, W., 1984. Geophysical data analysis: Discrete inverse theory. San Diego, Academic Press, 260pp.
  • Miller, R.D., Park, C.B., Xia, J., Ivanov, J.M., Laflen, D.R., 2000. Potential of MASW to delineate fractures in the Winterset Limestone at the Johnson County Landfill, Kansas. Kansas Geological Survey, 27pp.
  • Montenat, C., Ott D’Estevou, P., Masse, P., 1987. Tectonicsedimentarv characters of the betics Neogene basins evolving in a crustal transcurrent shear zone (SE Spain). Bulletin des Centres Recherches ExpIaration - Production EIf-Aquitaine, 11, 1-22.
  • Nolet, G., 1993. Solving large linearized tomographic problems. In: Iyer, H.M., Hirahara, K. (eds.). Seismic Tomography, theory and practice. London, Chapman and Hall, 227-247.
  • Odum, J.K., Williams, R.A., Stephenson, W.J., Worley, D.M., von Hillebrandt-Andrade, C., Asencio, E., Cameron, A., 2007. Near-surface shear wave velocity versus depth profiles, Vs 30, and NEHRP classifications for 27 sites in Puerto Rico. U.S. Geological Survey, iv, 43pp.
  • Olona, J., Pulgar, J.A., Fernández-Viejo, G., López-Fernández, C., González-Cortina, J.M., 2010. Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods Near Surface Geophysics, 8, 585-599. DOI: 10.3997/1873-0604.2010043
  • Palomeras, I., Villaseñor, A., Thurner, S., Levander, A., Gallart, J., Harnafi, M., 2017. Lithospheric structure of Iberia and Morocco using finite-frequency Rayleigh wave tomography from earthquakes and seismic ambient noise. Geochemistry, Geophysics, Geosystem, 18, 1824-1840. DOI: 10.1002/2016GC006657
  • Park, C.B., Carnevale, M., 2010. Optimum MASW Survey - Revisit after a Decade of Use. In: Fratta, D.O., Puppala, A.J., Muhunthan, B. (ed.). GeoFlorida 2010: Advences in Analysis. Modeling and Design, 1303-1312. DOI: 10.1061/41095(365)130
  • Park, C.B., Miller, R.D., Xia, J., 1999. Multichannel analysis of surface waves. Geophysics, 64, 800-808.
  • Parker, R.L., 1994. Geophysical Inverse Theory. Princeton (New Jersey), Princeton University Press, 386pp.
  • Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S., Slater, L., 2015. Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53, 1-26. DOI: 10.1002/2014RG000465
  • Press, W.H., Teukosky, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical recipes in C: The art of scientific computing. Oxford, Cambridge University Press, Second Edition. Rempe, D.M., Dietrich, W.E., 2014. A bottom-up control on fresh-bedrock topography under landscapes. Proceedings of the National Academy of Sciences, 111, 6576-6581. DOI: 10.1073/pnas.1404763111
  • Rix, G.J., Lai, C.G., 2005. SWAMI v. 1.2. 0–Surface Wave Modal Inversion Software. Atlanta (Georgia), Georgia Institute of Technology. Rodríguez-Escudero, E., Martínez-Díaz, J.J., Álvarez-Gómez, J.A., Insua-Arévalo, J.M., Capote del Villar, R., 2014. Tectonic setting of the recent damaging seismic series in the Southeastern Betic Cordillera, Spain. Bulletin of Earthquake Engineering, 12, 1831-1854. DOI: 10.1007/s10518-013-9551-3
  • Rohdewald, S.R., 2011. Interpretation of First-Arrival Travel Times with Wavepath Eikonal Traveltime Inversion and Wavefront Refraction Method. Symposium on the Application of Geophysics to Engineering and Environmental. Problems Proceedings, 31-38. DOI: 10.4133/1.3614086
  • Sánchez-Roldán, J.L., Martínez-Díaz, J.J., Cantavella, J.V., ÁlvarezGómez, J.A., Morales, J., 2021. Relocation of Seismicity in the Guadalentín Tectonic Valley, Eastern Betics Shear Zone (Southeast Iberia). Seismological Research Letters, 92(5), 3046-3064. DOI: https://doi.org/10.1785/0220200341
  • Sanz de Galdeano, C., Azañon, J.M., Cabral, J., Ruano, P., Alfaro, P., Canora, C., Ferrater, M., García-Tortosa, F.J., García-Mayordomo, J., Grácia, E., Insua-Arévalo, J.M., Jiménez-Bonilla, A., Gilles-Lacan, P., Marín-Lechado, C., Martín-Banda, R., Martín-González, F., Martínez-Díaz, J.J., Martín-Rojas, I., Masana, E., Ortuño, M., Pedrera, A., Perea, H., Simón, J.L.,2020. Active Faults in Iberia. In: Quesada, C., Oliveira, J. (eds.). The Geology of Iberia: A Geodynamic Approach. Springer, Regional Geology Reviews, 33-75. DOI: https://doi.org/10.1007/978-3-030-10931-8_4
  • Silva, P.G., Goy, J.L., Somoza, L., Zazo, C., Bardají, T., 1993. Landscape response to strike-slip faulting linked to collisional settings: Quaternary tectonics and basin formation in the Eastern Betics, southeastern Spain. Tectonophysics. 224, 289-303. DOI: 10.1016/0040-1951(93)90034-H
  • Silva, P.G., 1994. Evolución Geodinámica de la depresión del Guadalentín (Murcia) desde el Mioceno Superior hasta la actualidad: Neotectónica y Geomorfología. Doctoral Thesis. Madrid (Spain), Universidad Complutense de Madrid, 642pp.
  • Silva, P.G., Goy, J.L., Zazo, C., Bardají, T., 2003. Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225. DOI: https://doi.org/10.1016/S0169-
  • X(02)00215-5
  • Silva, P.G., 2014. The Guadalentín Tectonic Depression, Betic Cordillera, Murcia. In: Gutiérrez, F., Gutiérrez, M. (eds.). Landscapes and Landforms of Spain. World Geomorphological. Landscapes. Dordrecht, Springer, 25-35pp. DOI: https://doi.org/10.1007/978-94-017-8628-7_2
  • Snieder, R., Trampert, J., 1999. Inverse problems in geophysics, in Wavefield inversion. Springer Verlag, 119-190.
  • Socco, L.V., Foti, S., Boiero, D., 2010. Surface-wave analysis for building near-surface velocity models-Established approaches and new perspectives. Geophysics, 75(5), 75A83-75A102. DOI: https://doi.org/10.1190/1.3479491
  • Sun, C.G., Kim, B.H., Park, K.H., Chung, C.K., 2015. Geotechnical comparison of weathering degree and shear wave velocity in the decomposed granite layer in Hongseong, South Korea. Environmental Earth Sciences, 74, 6901-6917. DOI: https://doi.org/10.1007/s12665-015-4692-0
  • St. Clair, J., Moon, S., Holbrook, W.S., Perron, J.T., Riebe, C.S., Martel, S.J., Carr, B., Harman, C., Singha, K., Richter, D.D., 2015. Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350, 534-538. DOI: 10.1126/science.aab2210
  • Tarantola, A., Valette, B., 1982. Generalized Nonlinear inverse problems solved using the Least Squares Criterion. Reviews
  • of Geophysics and Space Physics, 20(2), 219-232. DOI: 10.1029/RG020i002p00219
  • Thurber, C.H., Atre, S.R., 1993. Three-dimensional Vp/Vs variations along the Loma Prieta rupture zone. Bulletin of the Seismological Society of America, 83, 717-736.
  • Villani, F., Improta, L., Pucci, S., Civico, R., Bruno, P.P.G., Pantosti, D., 2017. Investigating the architecture of the Paganica Fault (2009 Mw 6.1 earthquake, central Italy) by integrating highresolution multiscale refraction tomography and detailed geological mapping. Geophysical Journal International, 208(1), 403-423. DOI: https://doi.org/10.1093/gji/ggw407
  • Vissers, R.L.M., Meijninger, B.M.L., 2011. The 11 May 2011 earthquake at Lorca (SE Spain) viewed in a structural-tectonic context. Solid Earth, 2, 199- 204. DOI: 10.5194/se-2-199-2011
  • Wang, C.Y., Lin, W., Wu, F.T., 1978, Constitution of the San Andreas fault zone at depth. Geophysical Research Letters, 5, 741-744.
  • Werthmüller, D., 2017. An open-source full 3D electromagnetic modeler for 1D VTI media in Python: empymod. Geophysics, 82(6), WB9-WB19.
  • Xia, J., Miller, R.D., Park, C.B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64, 691-700. DOI: http://dx.doi.org/10.1190/1.1444578
  • Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B., 2000. Comparing shear-wave velocity profiles from MASW technique with borehole measurements in unconsolidated sediments of the Fraser River Delta. Journal of Environmental and Engineering Geophysics, 5(3), 1-13.
  • Xia, J., Miller, R.D., Park, C.B., Hunter, J.A., Harris, J.B., Ivanov, J., 2002. Comparing shear-wave velocity profiles inverted from
  • multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering, 22, 181-190.