A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables

  1. Porras, Santiago 1
  2. Jove, Esteban 2
  3. Baruque, Bruno 1
  4. Calvo-Rolle, José Luis 2
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

Journal:
Logic Journal of the IGPL

ISSN: 1367-0751 1368-9894

Year of publication: 2022

Type: Article

DOI: 10.1093/JIGPAL/JZAC031 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Logic Journal of the IGPL

Sustainable development goals

Bibliographic References

  • Informe sobre los elementos necesarios en la transición energética, (2017)
  • Sotavento installation, (2020)
  • Asociación Empresarial Eólica (AEE), (2019)
  • Repsol’s Economic Research Department, (2019), pp. 2019
  • Awad, (2015), Support Vector Regression, pp. 67
  • Baruque, (2014), Information Sciences, 280, pp. 307, 10.1016/j.ins.2014.05.005
  • Breiman, (2017), Classification and Regression Trees, 10.1201/9781315139470
  • British Petroleum, (2018)
  • Casteleiro-Roca, (2019), Revista Iberoamericana de Automática e Informática Industrial, 16, pp. 492, 10.4995/riai.2019.10986
  • da Silva, (2021), Energy, 216, pp. 119174, 10.1016/j.energy.2020.119174
  • De Giorgi, (2014), IET Science, Measurement and Technology, 8, pp. 90, 10.1049/iet-smt.2013.0135
  • Fernández-Delgado, (2019), Neural Networks, 111, pp. 11, 10.1016/j.neunet.2018.12.010
  • Friedman, (2001), Annals of Statistics, pp. 1189
  • Gajewski, (2016), Archives of Electrical Engineering, 65, pp. 643, 10.1515/aee-2016-0045
  • Guyon, (2003), Journal of Machine Learning Research, 3, pp. 1157
  • Hansen, (2007), Renewable Energy, 32, pp. 1594, 10.1016/j.renene.2006.10.008
  • Hothorn, (2005), Computational Statistics and Data Analysis, 49, pp. 1068, 10.1016/j.csda.2004.06.019
  • Infield, (2020), Renewable Energy in Power Systems
  • Jove, (2019), Advances in Intelligent Systems and Computing, pp. 399
  • Jove, (2019), Informatica, 30, pp. 671, 10.15388/Informatica.2019.224
  • Jove, (2020), Logic Journal of the IGPL, 28, pp. 502, 10.1093/jigpal/jzz057
  • Jove, (2021), Information Fusion, 65, pp. 50, 10.1016/j.inffus.2020.08.011
  • Kaiser, (1974), Psychometrika, 39, pp. 31, 10.1007/BF02291575
  • Kim, (2011), 2011 3rd International Conference on Awareness Science and Technology (iCAST), pp. 508, 10.1109/ICAwST.2011.6163181
  • Kohonen, (1982), Biological cybernetics, 43, pp. 59, 10.1007/BF00337288
  • Kosovic, (2020), Energies, pp. 1372
  • Kumar, (2016), Renewable and Sustainable Energy Reviews, 53, pp. 209, 10.1016/j.rser.2015.07.200
  • Lund, (2007), Energy, 32, pp. 912, 10.1016/j.energy.2006.10.017
  • Malvoni, (2017), Energy Procedia, 126, pp. 651, 10.1016/j.egypro.2017.08.293
  • Owusu, (2016), Cogent Engineering, 3, pp. 1167990, 10.1080/23311916.2016.1167990
  • Pal, (1992), IEEE Transactions on Neural Networks, 3, 10.1109/72.159058
  • Quinlan, Machine Learning Proceedings 1993, pp. 236
  • Schober, (2018), Anesthesia & Analgesia, 126, pp. 1763, 10.1213/ANE.0000000000002864
  • e. a. Shcherbakov, World Applied Sciences Journal, 24, pp. 171
  • Simón, (2012), Spanish Journal of Rural Development, 3
  • Wold, (1987), Chemometrics and Intelligent Laboratory Systems, 2, pp. 37, 10.1016/0169-7439(87)80084-9
  • Yang, (2014), IEEE Transactions on Sustainable Energy, 5, pp. 917, 10.1109/TSTE.2014.2313600