Fault Diagnosis System Using Neural Networks Models

  1. Javier García, F. 1
  2. García, Antonio J. 1
  3. Candau, José 1
  4. Perán, José R. 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revue:
IFAC Proceedings Volumes

ISSN: 1474-6670

Année de publication: 2000

Volumen: 33

Número: 11

Pages: 457-461

Type: Article

DOI: 10.1016/S1474-6670(17)37401-3 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: IFAC Proceedings Volumes

Résumé

This paper describes a Fault Diagnosis System method using analytical redundancy and neural networks identification. The identification mechanism obtains a neural network model. Finally this model is used for building a model-based fault diagnosis system, using parity equations. This hybrid method has been applied to a laboratory equipment.

Références bibliographiques

  • Frank, (1990), Automatica, 26, pp. 459, 10.1016/0005-1098(90)90018-D
  • Frank, (1993), pp. 817
  • García, (1997), pp. 705
  • Gertler, (1988), IEEE Control Systems Magazine. Dec, pp. 3, 10.1109/37.9163
  • Gertler, (1990), Automatica, 26, pp. 381, 10.1016/0005-1098(90)90133-3
  • Haykin, (1993)
  • Isermann, (1993), Automatica, 29, pp. 815, 10.1016/0005-1098(93)90088-B
  • Köppen-Seliger, (1996)
  • (1989)
  • (1987)
  • Willsky, (1976), Automatica, 12, pp. 601, 10.1016/0005-1098(76)90041-8