The Physical Significance of Symmetries from the Perspective of Conservation Laws

  1. Sus, Adán 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Book:
Towards a Theory of Spacetime Theories

ISSN: 2381-5833 2381-5841

ISBN: 9781493932092 9781493932108

Year of publication: 2017

Pages: 267-285

Type: Book chapter

DOI: 10.1007/978-1-4939-3210-8_9 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

The empirical significance of symmetries in physical theories has been the subject of considerable discussion in recent times. Although there seems to be no problem with the interpretation of global spacetime symmetries, there is no consensus in relation to the empirical import of gauge symmetries and local spacetime symmetries.

Bibliographic References

  • Barnich G and Brandt F 2002 Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633 3Đ82 (Preprint hep-th/0111246)
  • P. G. Bergmann, Non-Linear Field Theories, Phys. Rev. 75 (1949), 680–685.
  • Bergmann, P. (1958) Conservation Laws in General Relativity as the Generators of Coordinate Transformations. Phys. Rev. 112, 287.
  • Brading, K. (2002). Which symmetry? Noether, Weyl and the conservation of electric charge. Studies in History and Philosophy of Modern Physics 33, 3–22.
  • Brading, K., & Brown, H. R., (2003). Symmetries and Noether’s theorems. In K. A. Brading & E. Castellani (Eds.), Symmetries in Physics: Philosophical Reflections (pp. 89–109). Cambridge: Cambridge University Press
  • Brading, K. and H. Brown (2004). Are gauge symmetry transformations observable? British Journal for the Philosophy of Science 55, 645–665.
  • Greaves, H. and Wallace, D (2014). Empirical consequences of symmetries. British Journal for the Philosophy of Science. 65(1), 59–89.
  • Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von-der Königl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. (pp. 235–257). (English translation: Tavel, M. A. (1971). Transport Theory and Statistical Mechanics, 1(3), 183–207.)
  • Kosso, P. (2000). The empirical status of symmetries in physics. British Journal for the Philosophy of Science 51, 81–98.
  • Trautman, A. (1962). Conservation laws in general relativity. In L. Witten (Ed.), Gravitation: An Introduction to Current Research. New York: Wiley.