Hacia una metodología de evaluación del rendimiento del alumno en entornos de aprendizaje iVR utilizando eye-tracking y aprendizaje automático

  1. Ana Serrano-Mamolar 1
  2. Ines Miguel-Alonso 1
  3. David Checa 1
  4. Carlos Pardo-Aguilar 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revista:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Año de publicación: 2023

Título del ejemplar: Neurotecnología en el aula: Investigación actual y futuro potencial

Número: 76

Páginas: 9-20

Tipo: Artículo

DOI: 10.3916/C76-2023-01 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación

Resumen

Actualmente, el uso de los datos del seguimiento de la mirada en entornos de aprendizaje de Realidad Virtual inmersiva (iVR) está destinado a ser una herramienta fundamental para maximizar los resultados de aprendizaje, dada la naturaleza poco intrusiva del eye-tracking y su integración en las gafas comerciales de Realidad Virtual. Pero, antes de que se pueda generalizar el uso del eye-tracking en entornos de aprendizaje, se deben identificar las tecnologías más adecuadas para el procesamiento de datos. Esta investigación propone el uso de técnicas de aprendizaje automático para este fin, evaluando sus capacidades para clasificar la calidad del entorno de aprendizaje y predecir el rendimiento de aprendizaje del usuario. Para ello, se ha desarrollado una experiencia docente en iVR para aprender el manejo de un puente-grúa. Con esta experiencia se ha evaluado el rendimiento de 63 estudiantes, tanto en condiciones óptimas de aprendizaje como en condiciones con factores estresores. El conjunto de datos final incluye 25 características, siendo la mayoría series temporales con un tamaño de conjunto de datos superior a 50 millones de puntos. Los resultados muestran que la aplicación de diferentes clasificadores como KNN, SVM o Random Forest tienen una alta precisión a la hora de predecir alteraciones en el aprendizaje, mientras que la predicción del rendimiento del aprendizaje del usuario aún está lejos de ser óptima, lo que abre una nueva línea de investigación futura. Este estudio tiene como objetivo servir como línea de base para futuras mejoras en la precisión de los modelos mediante el uso de técnicas de aprendizaje automático más complejas.

Información de financiación

Financiadores

Referencias bibliográficas

  • Añaños-Carrasco, E. (2015). Eyetracker technology in elderly people: How integrated television content is paid attention to and processed. [La tecnología del «EyeTracker» en adultos mayores: Cómo se atienden y procesan los contenidos integrados de televisión]. Comunicar, 45, 75-83. https://doi.org/10.3916/C45-2015-08
  • Asish, S.M., Kulshreshth, A.K., & Borst, C.W. (2022). Detecting distracted students in educational VR environments using machine learning on eye gaze data. Computers & Graphics, 109, 75-87. https://doi.org/10.1016/j.cag.2022.10.007
  • Bowman, D.A., & Mcmahan, R.P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36-43. https://doi.org/10.1109/MC.2007.257
  • Checa, D., & Bustillo, A. (2020). A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 79, 5501-5527. https://doi.org/10.1007/s11042-019-08348-9
  • Checa, D., & Bustillo, A. (2022). Grua Rv. http://3dubu.Es/En/Cranevr/
  • Checa, D., Gatto, C., Cisternino, D., De Paolis, L.T., & Bustillo, A. (2020). A Framework for Educational and Training Immersive Virtual Reality Experiences. In L. T. de Paolis, & P. Bourdot (Eds.), Augmented reality, virtual reality, and computer graphics (pp. 220-228). Springer International Publishing. https://doi.org/10.1007/978-3-030-58468-9_17
  • Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A.W. (2018). Time series feature extraction on basis of scalable hypothesis tests (tsfresh - A Python package). Neurocomputing, 307, 72-77. https://doi.org/10.1016/j.neucom.2018.03.067
  • Christ, M., Kempa-Liehr, A., & Feindt, M. (2016). Distributed and parallel time series feature extraction for industrial big data applications. ArXiv, 1. https://doi.org/10.48550/arXiv.1610.07717
  • Cowan, A., Chen, J., Mingo, S., Reddy, S.S., Ma, R., Marshall, S., Nguyen, J.H., & Hung, A.J. (2021). virtual reality vs dry laboratory models: Comparing automated performance metrics and cognitive workload during robotic simulation training. Journal of Endourology, 35(10), 1571-1576. https://doi.org/10.1089/end.2020.1037
  • Dale, E. (1946). Audiovisual methods in teaching. Dryden Press. https://bit.ly/42aW03X
  • Dalgarno, B., & Lee, M.J.W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, (1), 41-41. https://doi.org/10.1111/j.1467-8535.2009.01038.x
  • Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69. https://doi.org/10.1126/science.1167311
  • Deng, Q., Wang, J., Hillebrand, K., Benjamin, C.R., & Soffker, D. (2020). Prediction performance of lane changing behaviors: A study of combining environmental and eye-tracking data in a driving simulator. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3561-3570. https://doi.org/10.1109/TITS.2019.2937287
  • Duchowski, A.T. (2002). A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455-470. https://doi.org/10.3758/BF03195475
  • Farran, E., Formby, S., Daniyal, F., Holmes, T., & Herwegen, J. (2016). Route-learning strategies in typical and atypical development; eye-tracking reveals atypical landmark selection in Williams syndrome: Route-learning and eye-tracking. Journal of Intellectual Disability Research, 60(10), 933-944. https://doi.org/10.1111/jir.12331
  • García-Carrasco, J., Hernández-Serrano, M.J., & Martín-García, A.V. (2015). Plasticity as a framing concept enabling transdisciplinary understanding and research in neuroscience and education. Learning, Media and Technology, 40, 152-167. https://doi.org/10.1080/17439884.2014.908907
  • Gardony, A.L., Lindeman, R.W., & Brunyé, T.T. (2020). Eye-tracking for human-centered mixed reality: Promises and challenges. Proc.SPIE, 11310, 113100T. https://doi.org/10.1117/12.2542699
  • Glennon, J.M., Souza, H., Mason, L., Karmiloff-Smith, A., & Thomas, M.S.C. (2020). Visuo-attentional correlates of Autism Spectrum Disorder (ASD) in children with Down syndrome: A comparative study with children with idiopathic ASD. Research in Developmental Disabilities, 104, 103678. https://doi.org/10.1016/j.ridd.2020.103678
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2008). The WEKA data mining software: An update. SIGKDD Explor. Newsl, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278
  • Huang, H.M., Rauch, U., & Liaw, S.S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers and Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014
  • Lapborisuth, P., Koorathota, S., Wang, Q., & Sajda, P. (2021). Integrating neural and ocular attention reorienting signals in virtual reality. Journal of Neural Engineering, 18(6). https://doi.org/10.1088/1741-2552/ac4593
  • Ma, X., Yao, Z., Wang, Y., Pei, W., & Chen, H. (2018). Combining brain-computer interface and eye-tracking for high-speed text entry in virtual reality. In IUI ’18: 23rd International Conference on Intelligent User Interfaces (pp. 263-267). https://doi.org/10.1145/3172944.3172988
  • Martinez, K., Menéndez-Menéndez, M.I., & Bustillo, A. (2021). Awareness, prevention, detection, and therapy applications for depression and anxiety in serious games for children and adolescents: Systematic review. JMIR Serious Games, 9(4). https://doi.org/10.2196/30482
  • Mckinney, W. (2011). pandas: A foundational Python library for data analysis and statistics. Python High Performance Science Computer.
  • Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., & Lefohn, A. (2016). Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph, 35(6), 1-12. https://doi.org/10.1145/2980179.2980246
  • Pritchard, A. (2017). Ways of learning: Learning theories for the classroom. Routledge. https://doi.org/10.4324/9781315460611
  • Rappa, N.A., Ledger, S., Teo, T., Wong, K.W., Power, B., & Hilliard, B. (2022). The use of eye-tracking technology to explore learning and performance within virtual reality and mixed reality settings: A scoping review. Interactive Learning Environments, 30(7), 1338-1350. https://doi.org/10.1080/10494820.2019.1702560
  • Rodero, E., & Larrea, O. (2022). Virtual reality with distractors to overcome public speaking anxiety in university students; [Realidad virtual con distractores para superar el miedo a hablar en público en universitarios]. Comunicar, 72. https://doi.org/10.3916/C72-2022-07
  • Shadiev, R., & Li, D. (2022). A review study on eye-tracking technology usage in immersive virtual reality learning environments. Computers & Education. https://doi.org/10.1016/j.compedu.2022.104681
  • Sun, Q., Patney, A., Wei, L.Y., Shapira, O., Lu, J., Asente, P., Zhu, S., Mcguire, M., Luebke, D., & Kaufman, A. (2018). Towards virtual reality infinite walking: Dynamic saccadic redirection. ACM Transactions on Graphics, 37(4), 1-13. https://doi.org/10.1145/3197517.3201294
  • Tanaka, Y., Kanari, K., & Sato, M. (2021). Interaction with virtual objects through eye-tracking. In International Workshop on Advanced Imaging Technology (IWAIT) 2021 (pp. 1176624). SPIE. https://doi.org/10.1117/12.2590989
  • Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, A Machine-learning Toolkit for Time Series Data. J. Mach. Learn. Res, 21, 1-6.
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9, 625-636. https://doi.org/10.3758/BF03196322
  • Wismer, P., Soares, S.A., Einarson, K.A., & Sommer, M.O.A. (2022). Laboratory performance prediction using virtual reality behaviometrics. PloS One, 17(12). https://doi.org/10.1371/journal.pone.0279320