Aplicación y retos de la tecnología de movimiento ocular en Educación Superior

  1. María Consuelo Sáiz-Manzanares 1
  2. Raúl Marticorena-Sánchez 1
  3. Luis-J. Martín-Antón 2
  4. Leandro Almeida 3
  5. Miguel-Ángel Carbonero-Martín 2
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  3. 3 Universidade do Minho
    info

    Universidade do Minho

    Braga, Portugal

    ROR https://ror.org/037wpkx04

Revista:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Año de publicación: 2023

Título del ejemplar: Neurotecnología en el aula: Investigación actual y futuro potencial

Número: 76

Páginas: 35-46

Tipo: Artículo

DOI: 10.3916/C76-2023-03 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación

Objetivos de desarrollo sostenible

Resumen

Los avances neurotecnológicos están posibilitando en los contextos educativos nuevos conocimientos sobre la forma de aprender de cada estudiante. No obstante, su aplicación plantea retos para la docencia en contextos naturales. En este trabajo se presenta un ejemplo de uso y aplicabilidad de la tecnología de seguimiento ocular en el ámbito de la Educación Superior. Se trabajó con una muestra de 20 estudiantes de tres universidades (Burgos y Valladolid en España y Miño en Portugal). Los objetivos fueron: 1) comprobar si existían diferencias significativas en indicadores de esfuerzo cognitivo (FC, FD, SC, PD, VC) hallados con la tecnología de seguimiento ocular entre estudiantes con y sin conocimientos previos; 2) comprobar si existían clústeres de patrones de conductas de aprendizaje entre los estudiantes; 3) analizar diferencias en la visualización de los patrones de conducta. Se utilizó un diseño cuasiexperimental sin grupo control y un diseño descriptivo. Los resultados indicaron diferencias significativas entre los estudiantes con y sin conocimientos previos respecto de los resultados de aprendizaje. También, se hallaron dos tipos de clústeres en los indicadores de esfuerzo cognitivo. Finalmente, se efectuó un análisis comparativo sobre los patrones de conducta de aprendizaje en estudiantes del clúster 1 vs. clúster 2. El uso de la tecnología de seguimiento ocular posibilita el registro de un gran volumen de datos respecto del proceso de aprendizaje. No obstante, en la actualidad su uso en contextos educativos naturales exige al profesorado conocimientos tecnológicos y de minería de datos.

Información de financiación

Este trabajo se ha desarrollado con la ayuda a dos proyectos de investigación: Proyecto europeo SmartArt 2019-1-ES01-KA204- 095615-Coordinador 6 y «Asistentes de voz e inteligencia artificial en Moodle: un camino hacia una universidad inteligente». Convocatoria 2020 Proyectos de I+D+i - RTI Tipo B. Referencia: PID2020-117111RB-I00.

Financiadores

    • PID2020-117111RB-I00

Referencias bibliográficas

  • Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers and Education, 125, 413-428. https://doi.org/10.1016/j.compedu.2018.06.023
  • Asadi, A., Saeedpour-Parizi, M.R., Aiken, C.A., Jahanbani, Z., Houminiyan-Sharif-Abadi, D., Simpson, T., & Marchant, D. (2022). Effects of attentional focus and cognitive load on novice dart throwing: Evidence from quiet eye duration and pupillary responses. Human Movement Science, 86, 103015-103015. https://doi.org/10.1016/j.humov.2022.103015
  • Azevedo, R., & Gaševi, D. (2019). Analyzing multimodal multichannel data about self-regulated learning with advanced learning technologies: Issues and challenges. Computers in Human Behavior, 96, 207-210. https://doi.org/10.1016/j.chb.2019.03.025
  • Bogarín, A., Cerezo, R., & Romero, C. (2018). A survey on educational process mining. Wiley Interdisciplinary Reviews, 8(1). https://doi.org/10.1002/widm.1230
  • Campbell, D.F., & Stanley, J. (2005). Diseños experimentales y cuasiexperimentales en la investigación social. Amorrortu. https://bit.ly/3JJDubN
  • Chango, W., Lara, J.A., Cerezo, R., & Romero, C. (2022). A review on data fusion in multimodal learning analytics and educational data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(4), 1-19. https://doi.org/10.1002/widm.1458
  • Chemerys, H.Y., & Ponomarenko, O.V. (2022). Opportunities and prospects for personalizing the user interface of the educational platform in accordance with the personality psychotypes. Advances in Computational Design, 7, 139-151. https://doi.org/10.12989/acd.2022.7.2.139
  • Corp, I. (2022). SPSS Statistical Package for the Social Sciences (SPSS) (Versión 28). [Software]. IBM. https://ibm.co/3hWIls7
  • Coskun, A., & Cagiltay, K. (2022). A systematic review of eye-tracking-based research on animated multimedia learning. Journal of Computer Assisted Learning, 38(2), 581-598. https://doi.org/10.1111/jcal.12629
  • Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hoevar, T., Milutinovic, M., Možina, M., Polajnar, M., Toplak, M., Stari, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Zitnik, M., & Zupan, B. (2013). Orange: data mining toolbox in Python. The Journal of Machine Learning Research, 14(1), 2349-2353. https://bit.ly/3yNtGHi
  • Díez-Pastor, J.F., García-Osorio, C., & Rodríguez, J.J. (2014). Tree ensemble construction using a GRASP-based heuristic and annealed randomness. Information Fusion, 20(1), 189-202. https://doi.org/10.1016/j.inffus.2014.01.009
  • Diwanji, V.S. (2022). Improving accessibility and inclusiveness of university websites for international students: a mixed-methods usability assessment. Technology, Pedagogy and Education, 32, 1-26. https://doi.org/10.1080/1475939X.2022.2089724
  • Elliott, L.J., Lum, H.C., Aqlan, F., Zhao, R., & Lasher, C.D. (2020). A Study of Metacognitive Problem Solving in Undergraduate Engineering Students. In Advances in Intelligent Systems and Computing (pp. 95-102). Springer International Publishing. https://doi.org/10.1007/978-3-030-20135-7_9
  • Feng, S., & Law, N. (2021). Mapping artificial intelligence in education research: A network-based keyword analysis. International Journal of Artificial Intelligence in Education, 31, 277-303. https://doi.org/10.1007/s40593-021-0024
  • Fiorella, L. (2022). Learning by explaining after pauses in video lectures: Are provided visuals a scaffold or a crutch? Applied Cognitive Psychology, 36(5), 1142-1149. https://doi.org/10.1002/acp.3994
  • Giannakos, M.N., Sharma, K., Pappas, I.O., Kostakos, V., & Velloso, E. (2019). Multimodal data as a means to understand the learning experience. International Journal of Information Management, 48, 108-119. https://doi.org/10.1016/j.ijinfomgt.2019.02.003
  • He, D., Wang, Z., Khalil, E.B., Donmez, B., Qiao, G., & Kumar, S. (2022). Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures. Transportation Research Record: Journal of the Transportation Research Board, 2676(10), 670-681. https://doi.org/10.1177/03611981221090937
  • Joe-Louis-Paul, Sasirekha, I., Uma-Maheswari, S., Ajith, S., Arjun, K.A.M., Athesh-Kumar, S.M., & S (2019). Eye Gaze Tracking-Based Adaptive E-learning for Enhancing Teaching and Learning in Virtual Classrooms. In S. Fong, S. Akashe, & P. Mahalle (Eds.), Information and Communication Technology for Competitive Strategies (pp. 165-176). Springer. https://doi.org/10.1007/978-981-13-0586-3
  • Kao, G.Y.M., Chiang, X.Z., & Foulsham, T. (2019). Reading behavior and the effect of embedded selfies in role-playing picture e-books: An eye-tracking investigation. Computers and Education, 136, 99-112. https://doi.org/10.1016/j.compedu.2019.03.010
  • Kuhnel, M., Seiler, L., Honal, A., & Ifenthaler, D. (2018). Mobile learning analytics in higher education: Usability testing and evaluation of an app prototype. Interactive Technology and Smart Education, 15, 332-347. https://doi.org/10.1108/ITSE-04-2018-0024
  • Kulomäki, J., Oksama, L., Rantanen, E., & Hyönä, J. (2022). Attention control in a demanding dynamic time-sharing environment: An eye-tracking study. Attention, Perception, and Psychophysics, 84, 352-371. https://doi.org/10.3758/s13414-021-02377-z
  • Luo, W., & Zhou, R. (2020). Can working memory task-related EEG biomarkers measure fluid intelligence and predict academic achievement in healthy children? Frontiers in Behavioral Neuroscience, 14, 1-14. https://doi.org/10.3389/fnbeh.2020.00002
  • Mcleod, G., Mckendrick, M., Tafili, T., Obregon, M., Neary, R., Mustafa, A., Raju, P., Kean, D., Mckendrick, G., & Mckendrick, T. (2022). Patterns of skills acquisition in anesthesiologists during simulated interscalene block training on a soft embalmed thiel cadaver: Cohort study. JMIR Medical Education, 8(3), 1-21. https://doi.org/10.2196/32840
  • Merchie, E., Heirweg, S., & Van-Keer, H. (2022). Mind maps: Processed as intuitively as thought? Investigating late elementary students’ eye-tracked visual behavior patterns in-depth. Frontiers in Psychology, 13, 1-18. https://doi.org/10.3389/fpsyg.2022.821768
  • Mills, B.W., Carter, O.B.J., Rudd, C.J., Claxton, L.A., Ross, N.P., & Strobel, N.A. (2016). Effects of low-versus high-fidelity simulations on the cognitive burden and performance of entry-level paramedicine students: A mixed-methods comparison trial using eye-tracking, continuous heart rate, difficulty rating scales, video observation and inter. Simulation in Healthcare, 11(1), 10-18. https://doi.org/10.1097/SIH.0000000000000119
  • Molina, A.I., Navarro, Ó., Lacruz, M., & Ortega, M. (2017). El empleo de técnicas de seguimiento ocular para evaluar materiales educativos en Educación Primaria. Revista de Educación, 376, 87-109. https://doi.org/10.4438/1988-592X-RE-2017-376-345
  • Ollesch, L., Heimbuch, S., & Bodemer, D. (2021). Improving learning and writing outcomes: Influence of cognitive and behavioral group awareness tools in wikis. International Journal of Computer, 16, 225-259. https://doi.org/10.1007/s11412-021-09346-6
  • Pi, Z., & Hong, J. (2016). Learning process and learning outcomes of video podcasts including the instructor and PPT slides: A Chinese case. Innovations in Education and Teaching International, 53(2), 135-144. https://doi.org/10.1080/14703297.2015.1060133
  • Prokop, M., Pila, L., & Tichá, I. (2020). Impact of think-aloud on eye-tracking: A comparison of concurrent and retrospective think-aloud for research on decision-making in the game environment. Sensors, (10), 20-20. https://doi.org/10.3390/s20102750
  • Rodziewicz-Cybulska, A., Krejtz, K., Duchowski, A.T., & Krejtz, I. (2022). Measuring cognitive effort with pupillary activity and fixational eye movements when reading: longitudinal comparison of children with and without primary music education. In ETRA ’22: 2022 Symposium on Eye Tracking Research and Applications (pp. 1-18). https://doi.org/10.1145/3517031.3529636
  • Rother, A., & Spliopoulou, M. (2022). Virtual reality for medical annotation tasks: A systematic review. Frontiers in Virtual Reality, 3, 1-12. https://doi.org/10.3389/frvir.2022.717383
  • Sáiz-Manzanares, M.C., Diez, J.J.R., Marticorena-Sánchez, R., Zaparaín-Yáñez, M.J., & Menéndez, R. (2020). Lifelong learning from sustainable education: An analysis with eye tracking and data mining techniques. Sustainability, (5), 12-12. https://doi.org/10.3390/su12051970
  • Sáiz-Manzanares, M.C., García-Osorio, C.I., Díez-Pastor, J.F., & Martín-Antón, L.J. (2019). Will personalized e-Learning increase deep learning in higher education? Information Discovery and Delivery, 47, 53-63. https://doi.org/10.1108/IDD-08-2018-0039
  • Sáiz-Manzanares, M.C., Payo-Hernanz, R.J., Zaparaín-Yáñez, M.J., Andrés-López, G., Marticorena-Sánchez, R., Calvo-Rodríguez, A., Martín, C., & Rodríguez-Arribas, S. (2021b). Eye-tracking technology and data-mining techniques used for a behavioral analysis of adults engaged in learning processes. Journal of Visualized Experiments, 172, 1-16. https://doi.org/10.3791/62103
  • Sáiz-Manzanares, M.C., Pérez, I.R., Rodríguez, A.A., Arribas, S.R., Almeida, L., & Martin, C.F. (2021a). Analysis of the learning process through eye tracking technology and feature selection techniques. Applied Sciences, (13), 11-11. https://doi.org/10.3390/app11136157
  • Scharinger, C., Schüler, A., & Gerjets, P. (2020). Using eye-tracking and EEG to study the mental processing demands during learning of text-picture combinations. International Journal of Psychophysiology, 158, 201-21 https://doi.org/10.1016/j.ijpsycho.2020.09.014
  • Schweizer, T., Wyss, T., & Gilgen-Ammann, R. (2022). Detecting soldiers’ fatigue using eye-tracking glasses: Practical field applications and research opportunities. Military Medicine, 187(11-12), 1330-1337. https://doi.org/10.1093/milmed/usab509
  • Seifert, L., Cordier, R., Orth, D., Courtine, Y., & Croft, J.L. (2017). Role of route previewing strategies on climbing fluency and exploratory movements. PLoS ONE, 12(4), 1-22. https://doi.org/10.1371/journal.pone.0176306
  • Seinen, T.M., Fridgeirsson, E.A., Ioannou, S., Jeannetot, D., John, L.H., Kors, J.A., Markus, A.F., Pera, V., Rekkas, A., Williams, R.D., Yang, C., Van Mulligen, E.M., & Rijnbeek, P.R. (2022). Use of unstructured text in prognostic clinical prediction models: A systematic review. Journal of the American Medical Informatics Association, 29(7), 1292-1302. https://doi.org/10.1093/jamia/ocac058
  • Shojaeizadeh, M., Djamasbi, S., Paffenroth, R.C., & Trapp, A.C. (2019). Detecting task demand via an eye tracking machine learning system. Decision Support Systems, 116, 91-101. https://doi.org/10.1016/j.dss.2018.10.012
  • Souchet, A.D., Philippe, S., Lourdeaux, D., & Leroy, L. (2022). Measuring Visual Fatigue and Cognitive Load via Eye Tracking while Learning with Virtual Reality Head-Mounted Displays: A Review. International Journal of Human-Computer Interaction, 38(9), 801-824. https://doi.org/10.1080/10447318.2021.1976509
  • Taub, M., & Azevedo, R. (2019). How Does Prior Knowledge Influence Eye Fixations and Sequences of Cognitive and Metacognitive SRL Processes during Learning with an Intelligent Tutoring System? International Journal of Artificial Intelligence in Education, 29(1), 1-28. https://doi.org/10.1007/s40593-018-0165-4
  • Taub, M., Mudrick, N.V., Azevedo, R., Millar, G.C., Rowe, J., & Lester, J. (2017). Using multi-channel data with multi-level modeling to assess in-game performance during gameplay with Crystal Island. Computers in Human Behavior, 76, 641-655. https://doi.org/10.1016/j.chb.2017.01.038
  • Thees, M., Altmeyer, K., Kapp, S., Rexigel, E., Beil, F., Klein, P., Malone, S., Brünken, R., & Kuhn, J. (2022). Augmented reality for presenting real-time data during students’ laboratory work: comparing a head-mounted display with a separate display. Frontiers in Psychology, 13, 1-16. https://doi.org/10.3389/fpsyg.2022.804742
  • Tobii Pro Lab (Ed.) (2023). User Manual v.1.194. https://bit.ly/41KjHQm
  • Tsai, M.J., Wu, A.H., Bråten, I., & Wang, C.Y. (2022). What do critical reading strategies look like? Eye-tracking and lag sequential analysis reveal attention to data and reasoning when reading conflicting information. Computers and Education, 187. https://doi.org/10.1016/j.compedu.2022.104544
  • Van-Marlen, T., Van Wermeskerken, M., Jarodzka, H., & Van-Gog, T. (2018). Effectiveness of eye movement modeling examples in problem solving: The role of verbal ambiguity and prior knowledge. Learning and Instruction, 58, 274-283. https://doi.org/10.1016/j.learninstruc.2018.07.005
  • Yang, F.Y., & Wang, H.Y. (2023). Tracking visual attention during learning of complex science concepts with augmented 3D visualizations. Computers & Education, 193. https://doi.org/10.1016/j.compedu.2022.104659