La identificación de enlaces ausentes como competición Kaggle para la enseñanza de teoría de redes

  1. Virginia Ahedo 1
  2. Ignacio Santos 1
  3. José Manuel Galán 1
  4. Luis R. Izquierdo 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revista:
Dirección y organización: Revista de dirección, organización y administración de empresas

ISSN: 1132-175X

Año de publicación: 2023

Número: 79

Páginas: 18-28

Tipo: Artículo

Otras publicaciones en: Dirección y organización: Revista de dirección, organización y administración de empresas

Resumen

En este trabajo describimos una competición en Kaggle en la que los alumnos afrontan el reto de predecir un número de enlaces ausentes de una red social de usuarios que califican películas. Las competiciones “InClass” de Kaggle son una herramienta de gamificación poderosa que puede aprovecharse para mejorar la motivación y el interés de los alumnos mediante el trabajo competitivo en equipo. En esta contribución, mostramos cómo convertir un problema de ciencia de las redes en un problema de clasificación que puede beneficiarse de la infraestructura que ofrece Kaggle

Referencias bibliográficas

  • ADAMIC, L. A. & ADAR, E. (2003). «Friends and neighbors on the Web». Social Networks, 25(3), pp. 211–230, doi:10.1016/S0378-8733(03)00009-1.
  • BARABÁSI, A.-L. (2016). Network Science. Cambridge, UK: Cambridge University Press.
  • BARABÁSI, A.-L. & ALBERT, R. (1999). «Emergence of Scaling in Random Networks». Science, 286(5439), pp. 509–512, doi:10.1126/science.286.5439.509.
  • BERLUSCONI, G., CALDERONI, F., PAROLINI, N., VERANI, M. & PICCARDI, C. (2016). «Link Prediction in Criminal Networks: A Tool for Criminal Intelligence Analysis». PLOS ONE, 11(4), p. e0154244, doi:10.1371/journal.pone.0154244.
  • BLONDEL, V. D., GUILLAUME, J.-L., LAMBIOTTE, R. & LEFEBVRE, E. (2008). «Fast unfolding of communities in large networks». Journal of Statistical Mechanics: Theory and Experiment, 2008(10), p. P10008, doi:10.1088/1742-5468/2008/10/P10008.
  • CABREJAS-ARCE, L. M., NAVARRO, J., AHEDO, V. & GALÁN, J. M. (2021). «NetExtractor. A Semi-automatic Educational Tool for Network Extraction Conceived to Differentiate by Student Interest». In: Herrero, A., Cambra, C., Urda, D., Sedano, J., Quintián, H., & Corchado, E. (eds.) The 11th International Conference on EUropean Transnational Educational (ICEUTE 2020). ICEUTE 2020. Cham: Springer, pp. 205–214.
  • CHAN, S. W., SCHILIZZI, S., IFTEKHAR, M. S. & DA SILVA ROSA, R. (2019). «Web-based experimental economics software: How do they compare to desirable features?». Journal of Behavioral and Experimental Finance, 23, pp. 138–160, doi:10.1016/j. jbef.2019.04.007.
  • CHEN, D. L., SCHONGER, M. & WICKENS, C. (2016). «oTree—An open-source platform for laboratory, online, and field experiments». Journal of Behavioral and Experimental Finance, 9, pp. 88–97, doi:10.1016/j. jbef.2015.12.001.
  • CRAMER, C. B., PORTER, M. A., SAYAMA, H. & SHEETZ, L. (2018). Network Science In Education. Network Science In Education. Cham, Switzerland: Springer.
  • DAUD, N. N., AB HAMID, S. H., SAADOON, M., SAHRAN, F. & ANUAR, N. B. (2020). «Applications of link prediction in social networks: A review». Journal of Network and Computer Applications, 166, p. 102716, doi:10.1016/j.jnca.2020.102716.
  • DETERDING, S., SICART, M., NACKE, L., O’HARA, K. & DIXON, D. (2011). «Gamification. using game-design elements in non-gaming contexts». In: Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. New York, New York, USA: ACM Press, p. 2425.
  • DICHEVA, D., DICHEV, C., AGRE, G. & ANGELOVA, G. (2015). «Gamification in education: A systematic mapping study». Journal of Educational Technology & Society, 18(3), pp. 75–88.
  • FISCHBACHER, U. (2007). «z-Tree: Zurich toolbox for ready-made economic experiments». Experimental Economics, 10(2), pp. 171–178, doi:10.1007/s10683- 006-9159-4.
  • FORTUNATO, S. & HRIC, D. (2016). «Community detection in networks: A user guide». Physics Reports, 659, pp. 1–44, doi:10.1016/j.physrep.2016.09.002.
  • GAO, F., MUSIAL, K., COOPER, C. & TSOKA, S. (2015). «Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics». Scientific Programming, 2015, pp. 1–13, doi:10.1155/2015/172879.
  • GERA, R. (2018). «Leading Edge Learning in Network Science». In: Network Science In Education. Cham, Switzerland: Springer, pp. 23–44.
  • GUIMERÀ, R. & SALES-PARDO, M. (2009). «Missing and spurious interactions and the reconstruction of complex networks». Proceedings of the National Academy of Sciences, 106(52), pp. 22073–22078, doi:10.1073/ pnas.0908366106.
  • HAGBERG, A., SWART, P. & CHULT, D. S. (2008). Exploring network structure, dynamics, and function using NetworkX (No. LA-UR-08-05495; LAUR-08-5495). Los Alamos, NM: Los Alamos National Lab.
  • HAGHANI, S. & KEYVANPOUR, M. R. (2019). «A systemic analysis of link prediction in social network». Artificial Intelligence Review, 52(3), pp. 1961–1995, doi:10.1007/s10462-017-9590-2.
  • HARPER, F. M. & KONSTAN, J. A. (2016). «The MovieLens Datasets». ACM Transactions on Interactive Intelligent Systems, 5(4), pp. 1–19, doi:10.1145/2827872.
  • HAVLIN, S., KENETT, D. Y., BEN-JACOB, E., BUNDE, A., COHEN, R., HERMANN, H., KANTELHARDT, J. W., KERTÉSZ, J., KIRKPATRICK, S., KURTHS, J., PORTUGALI, J. & SOLOMON, S. (2012). «Challenges in network science: Applications to infrastructures, climate, social systems and economics». The European Physical Journal Special Topics, 214(1), pp. 273–293, doi:10.1140/epjst/e2012-01695-x.
  • HUANG, Z., LI, X. & CHEN, H. (2005). «Link prediction approach to collaborative filtering». In: Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries - JCDL ’05. New York, New York, USA: ACM Press, p. 141.
  • HUANG, Z. & ZENG, D. D. (2006). «A Link Prediction Approach to Anomalous Email Detection». In: 2006 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 1131–1136.
  • KAGGLE COMPETITIONS (2021). Kaggle Competitions. https://www.kaggle.com/c/about/inclass [2021-03-2].
  • KHAN FOR EDUCATORS (US) (2021). Khan for Educators (US). https://www.khanacademy.org/khanfor-educators/k4e-us-demo [2021-03-2].
  • KOPF, S., SCHEELE, N., WINSCHEL, L. & EFFELSBERG, W. (2005). «Improving Activity and Motivation of Students with Innovative Teaching and Learning Technologiesitle». In: Proc. of Methods and Technologies for Learning. Palermo: WIT Press, pp. 551–556.
  • KOSSINETS, G. & WATTS, D. J. (2009). «Origins of Homophily in an Evolving Social Network». American Journal of Sociology, 115(2), pp. 405–450, doi:10.1086/599247.
  • KUMAR, A., SINGH, S. S., SINGH, K. & BISWAS, B. (2020). «Link prediction techniques, applications, and performance: A survey». Physica A: Statistical Mechanics and its Applications, 553, p. 124289, doi:10.1016/j.physa.2020.124289.
  • LÜ, L., MEDO, M., YEUNG, C. H., ZHANG, Y.-C., ZHANG, Z.-K. & ZHOU, T. (2012). «Recommender systems». Physics Reports, 519(1), pp. 1–49, doi:10.1016/j.physrep.2012.02.006.
  • NEWMAN, M. E. J. (2001). «Clustering and preferential attachment in growing networks». Physical Review E, 64(2), p. 025102, doi:10.1103/PhysRevE.64.025102.
  • NEWMAN, M. E. J. (2018). Networks. 2nd ed. New York, NY, USA: Oxford University Press.
  • PECLI, A., GIOVANINI, B., C. PACHECO, C., MOREIRA, C., FERREIRA, F., TOSTA, F., TESOLIN, J., VINICIUS DIAS, M., FILHO, S., CLAUDIA CAVALCANTI, M. & GOLDSCHMIDT, R. (2015). «Dimensionality Reduction for Supervised Learning in Link Prediction Problems». In: Proceedings of the 17th International Conference on Enterprise Information Systems. SCITEPRESS - Science and and Technology Publications, pp. 295–302.
  • PEREDA, M., POZA, D., SANTOS, J. I. & GALÁN, J. M. (2015). «Quality Uncertainty and Market Failure: An Interactive Model to Conduct Classroom Experiments». In: Herrero, Á., Baruque, B., Sedano, J., Quintián, H., & Corchado, E. (eds.) International Joint Conference CISIS’15 and ICEUTE’15. Cham: Springer, pp. 549– 557.
  • SAYAMA, H. (2018). «Mapping the Curricular Structure and Contents of Network Science Courses». In: Cramer, C., Porter, M. A., Sayama, H., Sheetz, L., & Uzzo, S. (eds.) Network Science In Education. Cham, Switzerland: Springer, pp. 101–116.
  • SEABORN, K. & FELS, D. I. (2015). «Gamification in theory and action: A survey». International Journal of Human-Computer Studies, 74, pp. 14–31, doi:10.1016/j. ijhcs.2014.09.006.
  • SOKOLOVA, M. & LAPALME, G. (2009). «A systematic analysis of performance measures for classification tasks». Information Processing & Management, 45(4), pp. 427–437, doi:10.1016/j.ipm.2009.03.002.
  • SOUNDARAJAN, S. & HOPCROFT, J. (2012). «Using community information to improve the precision of link prediction methods». In: Proceedings of the 21st international conference companion on World Wide Web - WWW ’12 Companion. New York, New York, USA: ACM Press, p. 607.
  • TANIZAWA, T. (2018). «Network Science in Your Pocket». In: Cramer, C. B., Porter, M. A., Sayama, H., Sheetz, L., & Uzzo, S. M. (eds.) Network Science In Education. Cham, Switzerland: Springer, pp. 189–199.
  • TISUE, S. & WILENSKY, U. (2004). «NetLogo: Design and Implementation of a Multi-Agent Modeling Environment». In: Macal, C. M., Sallach, D., & North, M. J. (eds.) Proceedings of the Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence. Chicago: Argonne National Laboratory, pp. 161–181.
  • WILENSKY, U. & STROUP, W. M. (2000). «Networked Gridlock: Students Enacting Complex Dynamic Phenomena with the HubNet Architecturee». In: Fishman, B. & O’Connor-Divelbiss, S. (eds.) Proceedings of The Fourth Annual International Conference of the Learning Sciences. Mahwah: Erlbaum, pp. 282–289.
  • YULIANSYAH, H., OTHMAN, Z. A. & BAKAR, A. A. (2020). «Taxonomy of link prediction for social network analysis: A review». IEEE Access, 8(1), pp. 183470– 183487, doi:10.1109/ACCESS.2020.3029122.
  • ZHOU, T., LÜ, L. & ZHANG, Y.-C. (2009). «Predicting missing links via local information». The European Physical Journal B, 71(4), pp. 623–630, doi:10.1140/ epjb/e2009-00335-8.
  • ZICHERMANN, G. & CUNNINGHAM, C. (2011). Gamification by Design: Implementing Game Mechanics in Web and Mobile Apps. O’Reilly Media, Inc.