Numerical Modeling of Kinetic Features and Stability Analysis of Jinpingzi Landslide

  1. Huang, Jiaxuan 3
  2. Du, Weichao 2
  3. Xie, Mowen 1
  4. González Aguilera, Diego ed. lit. 4
  5. Rodríguez-Gonzálvez, Pablo ed. lit.
  1. 1 Department of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  2. 2 32023 Troops, Dalian 116023, China
  3. 3 Chinese-German Institute of Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
  4. 4 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Land

ISSN: 2073-445X

Año de publicación: 2023

Volumen: 12

Número: 3

Páginas: 679

Tipo: Artículo

DOI: 10.3390/LAND12030679 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Land

Resumen

The kinetic features of a slow-moving landslide situated above the Wudongde hydropower station were analyzed using particle flow code 3D (PFC3D) software. This research was based on geological investigations, remote sensing interpretation, and digital elevation models to build the structure of the Jinpingzi landslide. Finite element analysis (FEM) was used to determine the sliding surface. Strength reduction theory (SRT) and particle flow code coupling were used to invert the macro-strength parameters into micro-strength parameters. Finally, the slope failure process was simulated. Meanwhile, the displacement vector angle (DVA) and velocity were used for stability analysis. The simulation results of the kinetic features of slow-moving landslides show that the initial stage begins with accelerated movement, followed by constant-velocity movement and instability failure. The larger the reduction coefficient is, the shorter the duration of each stage is. A two-parameter instability criterion is proposed based on velocity, DVA, and reduction coefficient. Using this criterion, the critical velocity was 200 mm/s, and the critical DVA was 28.15°. The analysis results agree with the actual field monitoring results and motion process. This work confirms that the PFC3D modeling method is suitable for simulating the motion features of landslides.

Información de financiación

Financiadores

Referencias bibliográficas

  • Wan, (2010), Nat. Hazards, 52, pp. 211, 10.1007/s11069-009-9366-3
  • Vinueza, (2022), Landslides, 19, pp. 2233, 10.1007/s10346-022-01913-8
  • Nefeslioglu, (2011), Landslides, 8, pp. 459, 10.1007/s10346-011-0267-7
  • Luo, (2012), J. Rock Mech. Geotech. Eng., 4, pp. 149, 10.3724/SP.J.1235.2012.00149
  • Jeong, (2013), Eng. Geol., 154, pp. 1, 10.1016/j.enggeo.2012.12.006
  • Fan, (2017), Landslides, 14, pp. 2129, 10.1007/s10346-017-0907-7
  • Intrieri, (2018), Landslides, 15, pp. 123, 10.1007/s10346-017-0915-7
  • Kundu, J., Sarkar, K., Ghaderpour, E., Scarascia Mugnozza, G., and Mazzanti, P. (2023). A GIS-Based Kinematic Analysis for Jointed Rock Slope Stability: An Application to Himalayan Slopes. Land, 12.
  • Huang, (2014), Landslides, 11, pp. 513, 10.1007/s10346-013-0453-x
  • He, (2018), Eng. Geol., 247, pp. 84, 10.1016/j.enggeo.2018.10.021
  • Du, (2018), Eng. Geol., 239, pp. 13, 10.1016/j.enggeo.2018.03.012
  • Michele, (2020), Bull. Earthq. Eng., 18, pp. 1635, 10.1007/s10518-019-00765-3
  • Jiang, (2011), Environ. Earth Sci., 62, pp. 411, 10.1007/s12665-010-0536-0
  • Huang, (2017), J. Mt. Sci., 14, pp. 2137, 10.1007/s11629-017-4516-7
  • Hu, (2020), Landslide, 17, pp. 2317, 10.1007/s10346-020-01382-x
  • Cheng, (2021), Landslides, 18, pp. 3857, 10.1007/s10346-021-01770-x
  • Niu, Q. (2014). Secondary Development of Loess Creep Model Based on FLAC3D and Application on Time Prediction of Landslide Sliding, Lanzhou University of Technology. (In Chinese).
  • Bru, (2018), Landslides, 15, pp. 257, 10.1007/s10346-017-0867-y
  • Kafle, (2022), Eng. Geol., 297, pp. 106508, 10.1016/j.enggeo.2021.106508
  • Lei, (2006), Rock Soil Mech., 10, pp. 1693
  • Zhang, (2012), Chin. J. Rock Mech. Eng., 31, pp. 2601
  • Hu, (2019), J. Geomech., 4, pp. 527
  • Li, (2021), Bull. Eng. Geol. Environ., 80, pp. 3405, 10.1007/s10064-021-02109-5
  • Shiu, (2023), Landslide, 20, pp. 331, 10.1007/s10346-022-01963-y
  • Zhang, (2021), Landslides, 18, pp. 2575, 10.1007/s10346-021-01688-4
  • Zhang, (2021), Environ. Earth Sci., 80, pp. 355, 10.1007/s12665-021-09651-1
  • Jiang, (2018), J. Mt. Sci., 15, pp. 364, 10.1007/s11629-017-4473-1
  • Shah, S.S., Mathur, S., and Chakma, S. (2022). Numerical modeling of one-dimensional variably saturated flow in a homogeneous and layered soil–water system via mixed form Richards equation with Picard iterative scheme. Model. Earth Syst. Environ., peer-reviewed.
  • Sutaih, (2022), Arab. J. Geosci., 15, pp. 1085, 10.1007/s12517-022-10345-6
  • Chen, (2021), Nat. Hazards, 105, pp. 717, 10.1007/s11069-020-04333-w
  • Li, (2021), J. Cent. South Univ., 28, pp. 911, 10.1007/s11771-021-4653-6
  • Yan, (2022), Landslides, 19, pp. 1339, 10.1007/s10346-022-01872-0
  • Hu, (2021), Nat. Hazards, 105, pp. 1663, 10.1007/s11069-020-04371-4
  • Lu, (2022), Geotech. Geol. Eng., 40, pp. 4657, 10.1007/s10706-022-02176-9
  • Mao, (2011), Earth Environ., 39, pp. 399
  • Huang, (2020), Int. J. Remote Sens., 41, pp. 7509, 10.1080/01431161.2020.1760398
  • Chen, (2021), Eng. Geol., 286, pp. 10686, 10.1016/j.enggeo.2021.106086
  • Li, (2022), Landslides, 19, pp. 963, 10.1007/s10346-021-01804-4
  • Shi, (2016), J. Mt. Sci., 13, pp. 891, 10.1007/s11629-014-3399-0
  • Potyondy, (2007), Int. J. Rock Mech. Min. Sci., 44, pp. 677, 10.1016/j.ijrmms.2006.10.002
  • Sun, (2021), Bull. Eng. Geol. Environ., 80, pp. 4367, 10.1007/s10064-021-02237-y
  • Wang, (2022), Bull. Eng. Geol. Environ., 81, pp. 328, 10.1007/s10064-022-02829-2
  • He, (2003), Chin. J. Rock Mech. Eng., 22, pp. 1976
  • Qian, (2012), Chin. J. Rock Mech. Eng., 31, pp. 2619
  • Yang, (2020), Eng. Geol., 276, pp. 105765, 10.1016/j.enggeo.2020.105765
  • He, (2019), Environ. Earth Sci., 78, pp. 685, 10.1007/s12665-019-8709-y
  • Hou, (2021), Environ. Earth Sci., 80, pp. 515, 10.1007/s12665-021-09840-y