A Review of the Use of PLS-SEM in Neuromarketing ResearchRevisión del uso del PLS-SEM en las investigaciones sobre neuromarketing

  1. Margalina, Vasilica-Maria 1
  2. Jiménez Sánchez, Álvaro 2
  3. Ehrlich, Janna Susanne 3
  1. 1 Centro Universitario CESINE
  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  3. 3 Hamburg University of Technology
    info

    Hamburg University of Technology

    Hamburgo, Alemania

    ROR https://ror.org/04bs1pb34

Zeitschrift:
Index.comunicación: Revista científica en el ámbito de la Comunicación Aplicada

ISSN: 2174-1859

Datum der Publikation: 2023

Titel der Ausgabe: Theory and Praxis of Neuromarketing: innovation and research for the new communicative challenges of the market

Ausgabe: 13

Nummer: 2

Seiten: 119-146

Art: Artikel

DOI: 10.33732/IXC/13/02AREVIE DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Index.comunicación: Revista científica en el ámbito de la Comunicación Aplicada

Zusammenfassung

The methodology applied for the statistical analysis for understanding, explaining and predicting consumer behavior represents an important issue for neuromarketing research. This research analyses the use of the PLS-SEM method in this area. A total of 20 articles, which employed at least one neuromarketing method and performed PLS-SEM analysis, were found in the main data bases (i.e., WOS, Scopus, and others). A lack of an adequate approach for sampling and treatment of small samples was generally found. Problems with the proper application of the common PLS-SEM analysis procedures for the assessment of the outer and inner models, as well as with the application of advanced PLS-SEM approaches. Future studies should assess the suitability of using a PLS-SEM approach, depending on the research objective supporting the method, the conditions supporting its use, and its limitations. Guidelines are provided to researchers on when PLS-SEM is an appropriate research tool for neuromarketing research, which analytical method to use, and how to validate and communicate the results.

Bibliographische Referenzen

  • AHMADPOUR, M.; KORDNAEIJ, A.; YUNESI, A. & MOSHABBAKI, A. (2019). Effective advertisement design to attract customers’ attention: implementing sensory marketing’s principle for feature extraction. Journal of organizational behavior research, 4(S2), 1-34. https://tinyurl.com/2ua4mf6e
  • BADENES‐ROCHA, A.; BIGNE, E. & RUIZ, C. (2022). Impact of cause‐related marketing on consumer advocacy and cause participation: A causal model based on self‐reports and eye‐tracking measures. Psychology & Marketing, 39(1), 214-226. doi.org/10.1002/mar.21590
  • BARCLAY, D.; HIGGINS, C. & THOMPSON, R. (1995). The partial least squares (PLS) approach to casual modelling: Personal computer adoption and use as an illustration. Technology studies, 2(2), 285-309. https://tinyurl.com/3dh2b6a2
  • BECKER, J. M.; CHEAH, J. H.; GHOLAMZADE, R.; RINGLE, C. M. & SARSTEDT, M. (2023). PLS-SEM’s Most Wanted Guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346.
  • doi.org/10.1108/IJCHM-04-2022-0474
  • BELL, L.; VOGT, J.; WILLEMSE, C.; ROUTLEDGE, T.; BUTLER, L.T. y SAKAKI, M. (2018). Beyond Self-Report: A Review of Physiological and Neuroscientific Methods to Investigate Consumer Behavior. Frontiers in Psychology, 9, 1-16. doi.org/10.3389/fpsyg.2018.01655
  • BENÍTEZ, J.; HENSELER, J.; CASTILLO, A. & SCHUBERTH, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. doi.org/10.1016/j.im.2019.05.003
  • BETTIGA, D. & LAMBERTI, L. (2020). Future-Oriented Happiness: Its Nature and Role in Consumer Decision-Making for New Products. Frontiers in Psychology, 11(929), 1-14. doi.org/10.3389/fpsyg.2020.00929
  • BETTIGA, D.; LAMBERTI, L. & NOCI, G. (2017). Do mind and body agree? Unconscious versus conscious arousal in product attitude formation. Journal of Business Research, 75, 108-117. doi.org/10.1016/j.jbusres.2017.02.008
  • BRAND, B. M. & REITH, R. (2022). Cultural differences in the perception of credible online reviews–The influence of presentation format. Decision Support Systems, 154(113710), 1-16. doi.org/10.1016/j.dss.2021.113710
  • BYRNE, A.; BONFIGLIO, E.; RIGBLY, C. & EDELSTYN, N. (2022). A systematic review of the prediction of consumer preference using EEG measures and machine-learning in neuromarketing research. Brain Informatics, 9(27), 1-23. doi.org/10.1186/s40708-022-00175-3
  • CASADO-ARANDA, L.-A. & SÁNCHEZ-FERNÁNDEZ, J. (2021). Advances in neuroscience and marketing: analyzing tool possibilities and research opportunities. Spanish Journal of Marketing - ESIC, 26(1), 3-22. doi.org/10.1108/SJME-10-2021-0196
  • CHERUBINO, P.; MARTÍNEZ, L. A. C.; CARATÙ, M.; CARTOCCI, G.; DI FLUMER; G., MODICA, M.; ROSSI, D.; MANCINI, M. & TRETTEL, A. (2019). Consumer Behavior through the Eyes of Neurophysiological Measures: State-of-the Art and Future Trends. Computational Intelligence and Neuroscience, ID 1976847. doi.org/10.1155/2019/1976847
  • CHIN, W. W. & DIBBERN, J. (2010). A Permutation Based Procedure for Multi-Group PLS Analysis: Results of Tests of Differences on Simulated Data and a Cross Cultural Analysis of the Sourcing of Information System Services between Germany and the USA. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (Springer Handbooks of Computational Statistics Series, vol. II) (pp. 171-193). Springer.
  • COHEN, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbraum.
  • DANKS, N. P.; SHARMA, P. N. & SARSTEDT, M. (2020). Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM). Journal of Business Research, 113(March), 13-24. doi.org/10.1016/j.jbusres.2020.03.019
  • DIJKSTRA, T. K. & HENSELER, J. (2015). Consistent partial least squares path modelling. MIS Quarterly, 39(2), 297-316. https://www.jstor.org/stable/26628355
  • ERSÖZ, S. & SCHRÖDER, H. (2022). Convenience and Emotions through Facial Expressions: Evidence from Online Medication Shopping Behavior. The Retail and Marketing Review, 18(2), 94-121. https://tinyurl.com/2p8semck
  • FÉLIX, R. & BORGES, A. (2014). Celebrity endorser attractiveness, visual attention, and implications for ad attitudes and brand evaluations: A replication and extension. J Brand Manag, 21, 579-593. doi.org/10.1057/bm.2014.24
  • GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2021). Experimenting through neuromarketing to measure the impact of Spanish cultural heritage. In R.J. Howlett & L.C. Jain (Eds.), Advances in Tourism, Technology and Systems: Selected Papers from, ICOTTS20, Vol. 209 (pp. 380-400). Springer Singapore. doi.org/10.1007/978-981-33-4260-6_34
  • GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2023). Emotional and cognitive response to cultural heritage and effects on virtual image of destination; an experimental comparison of data with encephalograms and measurement scales. Vegueta. Anuario de la Facultad de Geografía e Historia, 23, 1, 160-180. https://tinyurl.com/534cbdpr
  • GARZÓN-PAREDES, A. R., & ROYO-VELA, M. (2023). Emotional and cognitive responses to cultural heritage: a neuromarketing experiment using virtual reality in the tourist destination image model context. Journal of Positive Psychology and Wellbeing, 27(2), 630-651.
  • https://tinyurl.com/4c5zjnpj
  • GEFEN, D.; RIGDON, E. E. & STRAUB, D. (2011). Editor’s Comments: An Update and Extension to SEM Guidelines for Administrative and Social Science Research. MIS Quarterly, 35(2), 3-14. doi.org/10.2307/23044042
  • GONZÁLEZ-RODRÍGUEZ, M. R.; DÍAZ-FERNÁNDEZ, M. C. & GÓMEZ, C.P. (2020). Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions. Telematics and Informatics, 51(101404), 1-14. doi.org/10.1016/j.tele.2020.101404
  • GRIGALIUNAITE, V. & PILELIENE, L. (2016). Emotional or rational? The determination of the influence of advertising appeal on advertising effectiveness. Scientific Annals of Economics and Business, 63(3), 391-414. https://tinyurl.com/y7wkfzbm
  • GUENTHER, P.; GUENTHER, M.; RINGLE, C. M.; ZAEFERIAN, G. & CARTWRIGHT, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127-142. doi.org/10.1016/j.indmarman.2023.03.010
  • HAIR, J. F.; HULT, G. T. M.; RINGLE, C. M. & SARSTEDT, M. (2022). A Primer on Partial Least Square Equation Modelling (PLS-SEM) (3rd ed). Thousand Oaks, CA: Sage.
  • HAIR, J. F.; RISHER, J. J.; SARSTEDT, M. & RINGLE, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi.org/10.1108/EBR-11-2018-0203
  • HAIR, J. F.; SARSTEDT, M.; RINGLE, C. M. & MENA, J. A. (2012). An assessment of the use of partial least square equation modelling in marketing research. J. of Acad. Mark. Sci, 40, 414-433. doi.org/10.1007/s11747-011-0261-6
  • HAIR, J. F.; SARSTEDT, M.; MATTHEWS, L. M. & RINGLE, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I – method. European Business Review, 28(1), 63-76.
  • doi.org/10.1108/EBR-09-2015-0094
  • HAIR, J. F.; SARSTEDT, M.; RINGLE, C. M. & GUDERGAN, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. Thousand Oaks, CA: Sage.
  • HENSELER, J. (2021). Composite-based Structural Equation Modeling: Analyzing Latent and Emergent Variables. The Guilford Press.
  • HENSELER, J.; HUBONA, G. & RAY, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. doi.org/10.1108/IMDS-09-2015-0382
  • HENSELER, J.; RINGLE, C. M. & SARSTEDT, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. doi.org/10.1007/s11747-014-0403-8
  • HENSELER, J.; RINGLE, C. M. & SARSTEDT, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431. doi.org/10.1108/IMR-09-2014-0304
  • HERRANDO, C.; JIMÉNEZ-MARTÍNEZ, J.; MARTÍN-DE HOYOS, M. J.; ASAKAWA, K. & YANA, K. (2022). Emotional responses in online social interactions: the mediating role of flow. Asia Pacific Journal of Marketing and Logistics, (ahead-of-print). doi.org/10.1108/APJML-02-2022-0091
  • KENNY, D. A. (2018). Moderation. davidakenny.net. https://davidakenny.net/cm/moderation.htm
  • KLESEL, M.; SCHUBERTH, F.; HENSELER, J. & NIEHAVES, B. (2019). A test for multigroup comparison using partial least squares path modeling. Internet Research, 29(3), 464-477. doi.org/10.1108/IntR-11-2017-0418
  • KLESEL, M.; SCHUBERTH, F.; NIEHAVES, B. & HENSELER, J. (2022). Multigroup Analysis in Information Systems Research using PLS-PM. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 53(3), 26-48. doi.org/10.1145/3551783.3551787
  • KOCK, N. (2018). Single missing data imputation in PSL-based structural equation modeling. Journal of Modern Applied Statistics Methods, 17(1), 1-23. doi.org/10.22237/jmasm/1525133160
  • LI, S. (2019). Emotional Appeals in Tourism TV Commercials: A Psycho-Physiological Study. Journal of Hospitality & Tourism Research, 43(6), 783-806. doi.org/10.1177/1096348019828440
  • LI, S.; WALTERS, G.; PACKER, J. & SCOTT, N. (2017). A Comparative Analysis of Self-Report and Psychophysiological Measures of Emotion in the Context of Tourism Advertising. Journal of Travel Research, 57(8), 1078-1092. doi.org/10.1177/0047287517733555
  • LIENGAARD, B. D.; SHARMA, P. N.; HULT, G. T. M.; JENSEN, M. B.; SARSTEDT, M.; HAIR, J. F. & RINGLE, C.M. (2021). Prediction: Coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modelling. Decision Sciences, 52(2), 362-392. doi.org/10.1111/deci.12445
  • MARCOULIDES, G. A.; CHIN, W. W. & SAUNDERS, C. (2009). A Critical Look at Partial Least Squares Modeling. MIS Quarterly, 33(1), 171-175. doi.org/10.2307/20650283
  • MONTEIRO, P.; GUERREIRO, J. & LOUREIRO, S. M. C. (2020). Understanding the role of visual attention on wines’ purchase intention: an eye-tracking study. International Journal of Wine Business Research, 32(2), 161-179. doi.org/10.1108/IJWBR-03-2019-0017
  • NITZL, C.; ROLDÁN, J. L. & CEPEDA, G. (2016). Mediation analysis in partial least squares path modelling. Helping researchers discuss more sophisticated models. Industrial Management and Data Systems, 116(9), 1849-1864. doi.org/10.1108/IMDS-07-2015-0302
  • QU, Q.-X.; GUO, F. & DUFFY, V. G. (2017). Effective use of human physiological metrics to evaluate website usability: An empirical investigation from China. Aslib Journal of Information Management, 69(4), 370-388. doi.org/10.1108/AJIM-09-2016-0155
  • RAWNAQUE, F. S.; RAHMAN, K. M.; AHNWAR, S. F.; VAIDYANATHN, R.; CHAU, T.; SARKER, F. & AL MAMUN, K. (2020).Tehnological advancements and opportunities in Neuromarketing: a systematic review. Brain Informatics, 7(10), 1-19. doi.org/10.1186/s40708-020-00109-x
  • RIGDON, E. E.; SARSTEDT, M. & RINGLE, C. M. (2017). On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations. Marketing ZFP, 39(3), 4-16. doi.org/10.15358/0344-1369-2017-3-4
  • RINGLE, C. M.; SARSTEDT, M.; SINKOVICS, N. & SINKOVICS, R. R. (2023). A Perspective on Using Partial Least Squares Structural Equation Modelling in Data Articles. Data in Brief, 48(June), 109074. doi.org/https://doi.org/10.1016/j.dib.2023.109074
  • ROYO-VELA, M. & GARZÓN-PAREDES, A. (2023). Effects of heritage on destination image: multi-method research based on an appraisal approach to emotional response in-situ. Journal of Heritage Tourism, 1-25. doi.org/10.1080/1743873X.2023.2178926
  • SARSTEDT, M.; HAIR, J. F. & RINGLE, C. M. (2022). “PLS-SEM: Indeed a Silver Bullet” – Retrospective Observations and Recent Advances. Journal of Marketing Theory & Practice. doi.org/10.1080/10696679.2022.2056488
  • SARSTEDT, M.; HAIR, J. F.; CHEAH, J. H.; BECKER, J. M. & RINGLE, C. M. (2019). How to Specify, Estimate, and Validate Higher-order Constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197-211. https://doi.org/10.1016/j.ausmj.2019.05.003
  • SARSTEDT, M.; HAIR, J. F.; PICK, M.; LIENGAARD, B. D.; RADOMIR, L. & RINGLE, C. M. (2022). Progress in Partial Least Squares Structural Equation Modeling Use in Marketing Research in the Last Decade. Psychology & Marketing, 39(5), 1035-1064. doi.org/10.1002/mar.21640
  • SARSTEDT, M.; RINGLE, C. M. & HAIR, J. F. (2021). Partial Least Square Equation Modelling. In Homburg, C., Klarmann, M., & Vomberg, A. (Eds.), Handbook of Marketing Research (pp. 1-47). Springer, Cham.
  • doi.org/10.1007/978-3-319-05542-8_15-2
  • SCHMUELI, G.; SARSTEDT, M.; HAIR, J. F.; CHEAH, J. H.; TING, H. & RINGLE, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. doi.org/10.1108/EJM-02-2019-0189
  • SCHUBERTH, F.; RADEMAKER, M. E. & HENSELER, J. (2022). Assessing the overall fit of composite model estimated by partial least squares equation modelling. European Journal of Marketing. doi.org/10.1108/EJM-08-2020-0586 (forthcoming)
  • SHARMA, PRATYUSH N.; LIENGAARD, B. D.; HAIR, J. F.; SARSTEDT, M. & RINGLE, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing. doi.org/10.1108/EJM-08-2020-0636
  • SHARMA, PRATYUSH NIDHI; SHMUELI, G.; SARSTEDT, M.; DANKS, N. & RAY, S. (2021). Prediction‐Oriented Model Selection in Partial Least Squares Path Modeling. Decision Sciences, 52(3), 567-607. doi.org/10.1111/deci.12329
  • SHMUELI, G.; RAY, S.; VELASQUEZ ESTRADA, J. M. & CHATLA, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. doi.org/10.1016/j.jbusres.2016.03.049
  • STREUKENS, S. & LEROI-WERELDS, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618-632. doi.org/10.1016/j.emj.2016.06.003
  • UHM, J. P.; LEE, H. W.; HAN, J. W. & KIM, D. K. (2022). Effect of background music and hierarchy-of-effects in watching women's running shoes advertisements. International Journal of Sports Marketing and Sponsorship, 23(1), 41-58. doi.org/10.1108/IJSMS-09-2020-0159
  • WANG, H.; LU, S. & LIU, Y. (2022). Missing data imputation in PLS-SEM. Quality & Quantity, 56(January), 4777-4795.
  • doi.org/10.1007/s11135-022-01338-4
  • YEN, C. & CHIANG, M. C. (2020). Trust me, if you can: a study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behaviour & Information Technology, 40(11), 1177-1194. doi.org/10.1080/0144929X.2020.1743362