What spacetime doesideal observers and (Earman's) symmetry principles

  1. Sus, Adan
Revista:
Theoria: an international journal for theory, history and foundations of science

ISSN: 0495-4548

Año de publicación: 2023

Volumen: 38

Número: 1

Páginas: 67-85

Tipo: Artículo

DOI: 10.1387/THEORIA.24403 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Theoria: an international journal for theory, history and foundations of science

Resumen

La interpretación y justificación de los principios de simetría de Earman (que establecen que toda simetría espaciotemporal debería ser una simetría dinámica y viceversa) son controvertidas. Esto está directamente conectado con la cuestión de cómo ciertas estructuras en la teorías físicas adquieren su carácter espacio-temporal. En este artículo abordo estos problemas desde una perspectiva que relaciona la discusión clásica sobre la determinación geométrica del espacio con una caracterización de la noción de simetría dinámica en la que juega un papel central su aplicación a subsistemas que actúan como aparatos de medida. Defiendo que para reformular y justificar los principios de Earman, y para proporcionar una caracterización general del carácter crono-geométrico de algunas estructuras, debe asumirse, en la interpretación de las teorías físicas, la existencia de una coordinación entre dos nociones de congruencia, una matemática y otra física. Dicha coordinación proporciona el marco en el que podemos entender el spaciotiempo en las teorías físicas como la codificación (representación) de ciertos rasgos del acceso a la experiencia de observadores ideales.

Referencias bibliográficas

  • Acuña, P. (2016). Minkowski spacetime and Lorentz invariance: The cart and the horse or two sides of a single coin? Studies in History and Philosophy of Modern Physics, 55, 1-12.
  • Baker, D. J. (2020). Knox’s inertial spacetime functionalism (and a better alternative). Synthese, 199, 277- 298. https://doi.org/10.1007/s11229-020-02598-z.
  • Brown, H.R. (2005). Physical Relativity: space-time structure from a dynamical perspective. Oxford: Oxford University Press.
  • Brown, H. R. and Pooley, O. (2001). The origin of the spacetime metric: Bell’s ‘Lorentzian Pedagogy’, and its Significance in General Relativity. In C. Callender and N. Huggett (Eds.). Physics meets philosophy at the Planck Scale (pp. 256-276). Cambridge: Cambridge University Press.
  • Brown, H.R., Pooley, O. (2006). Minkowski space-time: A glorious non-entity. In D. Dieks (Ed.). The ontology of spacetime (pp. 67-89). Amsterdam: Elsevier.
  • Brown, H., Read, J. (Forthcoming). The dynamical approach to space-time theories. In E. Knox and A. Wilson (Eds.). The Routledge Companion to Philosophy of Physics. London: Routledge.
  • Crowther, K., Linnemann, N.S. and Wüthrich, C. (2021). Spacetime functionalism in general relativity and quantum gravity. Synthese, 199, 221–227. https://doi.org/10.1007/s11229-020-02722-z.
  • Darrigol, O. (2014). Physics and necessity. Oxford: Oxford University Press.
  • Dasgupta, S. (2016). Symmetry as an epistemic notion (twice over). British Journal for the Philosophy of Science, 67, 837-878.
  • Dewar, N., Eisenthal, J. (2020). A room with a view. In Claus Beisbart, Tilman Sauer & Christian Wüthrich (Eds.). Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity (pp. 111-132). Cham: Springer.
  • Earman, J. (1989). World enough and Space-Time. Cambridge, MA: MIT Press.
  • Hagar, A., Hemmo, M. (2013). The primacy of geometry. Studies in History and Philosophy of Science, Part B: Studies in History and Philosophy of Modern Physics, 44 (3), 357-364.
  • Knox, E. (2013). E$ective spacetime geometry. Studies in History and Philosophy of Modern Physics, 44 (3), 346-356. http://dx.doi.org/10.1016/j.shpsb.2013.04.002.
  • Knox, E. (2019). Physical relativity from a functionalist perspective. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 67, 118-124.
  • Lam, V., Wüthrich, C. (2018). Spacetime is as spacetime does. Studies in History and Philosophy of Modern Physics, 64, 39-51.
  • Myrvold, W. C. (2019). How could relativity be anything other than physical?, Studies in History and Philosophy of Modern Physics, 67, 137-143. http://dx.doi.org/10.1016/j.shpsb.2017.05.007
  • Norton, J. D. (2008). Must Evidence Underdetermine Theory? In D. H. M. Carrier and J. Kourany (Eds.). The Challenge of the Social and the Pressure of Practice: Science and Values Revisited (pp. 17-44). Pittsburgh, PA: University of Pittsburgh Press.
  • Read, J. (2019). On miracles and spacetime. Studies in History and Philosophy of Modern Physics, 65, 103- 111. https://doi.org/10.1016/j.shpsb.2018.10.002
  • Read, J. (2020). Explanation, geometry, and conspiracy in relativity theory. In C. Beisbart, T. Sauer, & C. Wüthrich (Eds.). Thinking about space and time: 100 years of applying and interpreting general relativity (pp. 173-206). Boston, MA: Birkhäuser.
  • Read, J., Brown, H. Lehmkuhl, D. (2018). Two miracles of general relativiy. Studies in History and Philosophy of Modern Physics, 64, 14-25. https://doi.org/10.1016/j.shpsb.2018.03.001
  • Read, J., Menon, T. (2021). The limitations of inertial frame spacetime functionalism. Synthese, 199, 229- 251. https://doi.org/10.1007/s11229-019-02299-2.
  • Roberts, J. T. (2008). A puzzle about laws, symmetries and measurability. British Journal for the Philosophy of Science, 59, 143-168.
  • Scholz, E. (2016). The problem of space in the light of relativity: The views of Hermann Weyl and Elie Cartan. In Bioesmat-Martagon, L. (Ed.). Eléments d’une Biographie de l’espace Géométrique (pp. 255-312). Nancy: Presses Universitaires de Nancy.
  • Scholz, E. (2019). The changing faces of the problem of space in the work of Hermann Weyl. In C. Lobo & J. Bernard (Eds.). Weyl and the Problem of Space. Cham: Springer.
  • Sus, A. (2019). Explanation, analyticity and constitutive principles in spacetime theories. Studies in History and Philosophy of Modern Physics, 65, 15-24. https://doi.org/10.1016/j.shpsb.2018.08.002
  • Sus, A. (2020). How to be a realist about Minkowski spacetime without believing in magical explanations. THEORIA. An International Journal for Theory, History and Foundations of Science, 35 (2), 175-195. https://doi.org/10.1387/theoria.21065.
  • Sus, A. (2021). Relativity without miracles. The European Journal for Philosophy of Science, 11 (3), 1-33. https://doi.org/10.1007/s13194-020-00311-y.
  • Wallace, D. (2022a). Observability, redundancy and modality for dynamical symmetry transformations. In James Read, Bryan Roberts and Nic Teh (Eds.). The Philosophy and Physics of Noether’s Theorem. Cambridge: Cambridge University Press.
  • Wallace, D. (2022b). Isolated systems and their symmetries, Part I: General framework and particle-mechanics examples. Studies in History and Philosophy of Science, 92, 239-248.
  • Wallace, D. (2022c). Isolated systems and their symmetries, Part II: Local and global symmetries of field theories. Studies in History and Philosophy of Science, 92, 249-259.
  • Weatherall, J.O. (2021). Two dogmas of dynamicism. Synthese, 199, 253–275. https://doi.org/10.1007/ s11229-020-02880-0
  • Weyl, H. (1923). Mathematische Analyse des Raumproblems. Berlin: Springer.