Quantitative mineralogy and geochemical coherence through siroquant validation: implications for a Kaolinite-Gibbsite-Albite occurrence in heterogeneous Paleozoic bedrock of the Iberian Massif (NW Spain)

  1. Alcalde-Aparicio, Sara 1
  2. Gómez-Fernández, Fernando 2
  3. Alonso-Herrero, Eduardo 1
  4. Vidal-Bardán, Manuel 1
  1. 1 Department of Engineering and Agricultural Sciences, University of León
  2. 2 Department of Mining Engineering, University of León
Revista:
The Canadian Mineralogist

ISSN: 1499-1276 0008-4476

Año de publicación: 2019

Volumen: 57

Número: 1

Páginas: 47-64

Tipo: Artículo

DOI: 10.3749/CANMIN.1800036 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Canadian Mineralogist

Referencias bibliográficas

  • Abad, I., Mata, M.P., Nieto, F., & Velilla,N. (2001) The phyllosilicates in diagenetic-metamorphic rocks of the South Portuguese Zone, southwestern Portugal. Canadian Mineralogist39(6), 1571–1589.
  • Abad, I., Nieto, F., Peacor, D., & Velilla,N. (2016) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espunã (Spain). Clay Minerals38(1), 1–23.
  • Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology9(6), 723–734.
  • Árkai, P., Merriman, R.J., Roberts, B., Peacor, D.R., & Toth,M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. European Journal of Mineralogy8(5), 1119–1137.
  • Árkai, P., Abad, I., Nieto, F., Németh, T., Horváth, P., Kis, V.K., & Jiménez-Millán,J. (2012) Retrograde alterations of phyllosilicates in low-grade metapelite: a case study from the Szendrő Paleozoic, NE-Hungary. Swiss Journal of Geosciences105(2), 263–282.
  • Banfield, J.F. & Eggleton,R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals38(1), 77–89.
  • Barba, P., Heredia, N., Rodríguez Fernández, L.R., & Suárez,A. (1994) Capítulo II: Estratigrafía. InMapa Geológico de la Provincia de León a escala 1:200000. Instituto Tecnológico Geominero de España, Diputación de León, 13–90.
  • Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., & Lopez,J.M.G. (2000a) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology168(1), 135–150.
  • Bauluz, B., Peacor, D.R., & Lopez,J.M.G. (2000b) Transmission Electron Microscopy study of illitizaton in pelites from the Iberian Range, Spain: Layer-by-layer-replacement? Clays and Clay Minerals 48 (3), 374–384.
  • Bauluz, B., Mayayo, M.J., Yuste, A., & González,L. (2008) Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): analysis by XRD, SEM and TEM. Clay Minerals43(3), 459–475.
  • Bayliss, P. (1975) Nomenclature of the trioctahedral chlorites. Canadian Mineralogist13(2), 178–180.
  • Bish, D.L. & Post,J.E. (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. American Mineralogist78(9–10), 932–940.
  • Blanco, M., Taboada Castro, J., & Martínez-Alegría López,R. (1989) Incidence of mineralogical and textural characteristics in some properties of roofing slate. Cuaderno Laboratorio Xeoloxico de Laxe14, 247–254.
  • Brindley, G.W. (1951) The crystal structure of some chamosite minerals. Mineralogical Magazine29(212), 502–525.
  • Brindley, G.W. & Brown,G. (1980) Crystal structures of clay minerals and their X-Ray identification. Mineralogical of Society London, London, England, 495pp.
  • Brindley, G.W. & Gillery,F.H. (1954) A mixed-layer kaolin-chlorite structure. Clays and Clay Minerals2, 349–353.
  • Brindley, G.W., Souza, H.D., & Souza Santos,P. (1963) Mineralogical studies of kaolinite-halloysite clays. 1. Identification problems. American Mineralogist48(7–8), 897.
  • Cárdenes, V., Rubio-Ordoñez, A., Monterroso, C., & Calleja,L. (2013) Geology and geochemistry of Iberian roofing slates. Chemie Der Erde-Geochemistry73(3), 373–382.
  • Colmenero, J.R., Fernández, L.P., Moreno, C., Bahamonde, J.R., Barba, P., & Heredia,N. (2002) Carboniferous. InThe Geology of Spain ( GibbonsW.& Moreno,T.eds.). The Geological Society of London, London, England ( 120–153 ).
  • Cruz, M.R. & Reyes,E. (1998) Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry13(1), 95–104.
  • Deer, W., Howie, R., & Zussman,J. (1962) Rock forming minerals: Volume 3. Sheet Silicates. Longmans, Green and Co. Ltd., London, England, 270pp.
  • Fernández-Caliani, J.C. & Galan,E. (1991) Slates of the Iberian Pyrite Belt, south Portugal: geology, mineralogy and industrial uses. Estudios Geológicos47(5–6), 295–303.
  • Fernández-Caliani, J.C., Galán, E., Aparicio, P., Miras, A., & Márquez,M.G. (2010) Origin and geochemical evolution of the Nuevo Montecastelo kaolin deposit (Galicia, NW Spain). Applied Clay Science49(3), 91–97.
  • Fischer, C., Schmidt, C., Bauer, A., Gaupp, R., & Heide,K. (2009) Mineralogical and geochemical alteration of low-grade metamorphic black slates due to oxidative weathering. Chemie Der Erde-Geochemistry69(2), 127–142.
  • Frey, M. (1969) A mixed-layer paragonite/phengite of low grade DRV. All electron microscopy was performed at the metamorphic origin. Contributions to Mineralogy and Petrology24(1), 63–65.
  • Galán, E., Fernández-Caliani, J.C., Aparicio, P., Miras, A., & Márquez,M.G. (2010) Mineralogical and geochemical constraints on the origin of the residual kaolin deposits derived from variscan granitoids of Galicia (Spain). InCelebrating 100 Years of Mining Research. Annual Meeting 2010, Society for Mining, Metallurgy and Exploration ( 180–186 ).
  • Galán, E., Aparicio, P., Fernández-Caliani, J.C., Miras, A., Márquez, M.G., Fallick, A.E., & Clauer,N. (2016) New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain). Applied Clay Science131, 14–26.
  • García-Guinea, J., Lombardero, M., Roberts, B., Taboada, J., & Peto,A. (1998) Mineralogy and microstructure of roofing slate: thermo-optical behaviour and fissility. Materiales de Construcción48(251), 37–48.
  • García-Guinea, J., Cárdenes, V., Lombardero, M., & Desiloniz,M.L. (2002) Determinación de sulfuros de hierro en pizarras para las cubiertas del noroeste de España. Materiales de Construcción52(266), 55–63.
  • Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., & Lupker,M. (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters302(1–2), 107–120.
  • Gómez-Fernández, F., Castaño, M.A., Bauluz, B., & Ward,C.R. (2009a) Optical microscope and SEM evaluation of roofing slate fissility and durability. Materiales de Construcción59(296), 91–104.
  • Gómez-Fernández, F., Ward, C.R., & Bauluz,B. (2009b) XRD, electron microscopy (EMPA, SEM, TEM) and XRF characterization of roofing slates from NW Spain. Cadernos Lab. Xeolóxico de Laxe34, 127–142.
  • Guidotti, C.V. (1984) Micas in metamorphic rocks. InMicas ( Bailey,S.W.ed.). Mineralogical Society of America, Washington, D.C. (357–467 ).
  • Guidotti, C.V. & Sassi,F.P. (1998) Petrogenetic significance of Na-K white mica mineralogy: Recent advances for metamorphic rocks. European Journal of Mineralogy, 815–854.
  • Jeong, G.Y. (1998) Formation of vermicular kaolinite from halloysite aggregates in the weathering of plagioclase. Clays and Clay Minerals46(3), 270–279.
  • Jeong, G.Y. (2000) The dependence of localized crystallization of halloysite and kaolinite on primary minerals in the weathering profile of granite. Clays and Clay Minerals48(2), 196–203.
  • Jiang, W.T. & Peacor,D.R. (1993) Formation and modification of metastable intermediate sodium potassium mica, paragonite and muscovite in hydrothermally altered metabasites from northern Wales. American Mineralogist78(7–8), 782–793.
  • Jiménez-Millán, J., Vázquez, M., & Velilla,N. (2007a) Deformation-promoted defects and retrograde chloritization of biotite in slates from a shear zone, southern Iberian massif, SE Spain. Clays and clay minerals55(3), 284–294.
  • Jiménez-Millán, J., Velilla, N., & Vázquez,M. (2007b) Two-stage formation of kaolinite in shear-zone slates, southern Iberian Massif, SE Spain. Clay Minerals42(3), 273–286.
  • Klug, H.P. & Alexander,L.E. (1974) X-ray Diffraction Procedures. J. Wiley, New York, United States, 966pp.
  • Lee, J.H., Peacor, D.R., Lewis, D.D., & Wintsch,R.P. (1984) Chlorite-illite/muscovite interlayered and interstratified crystals: a TEM/STEM study. Contributions to Mineralogy and Petrology88, 372–385.
  • Li, G., Peacor, D.R., Merriman, R.J., Roberts, B., & van der Pluijm,B.A. (1994a) TEM and AEM constraints on the origin and significance of chlorite-mica stacks in slates: an example from Central Wales, UK. Journal of Structural Geology16(8), 1139–1157.
  • Li, G., Peacor, D.R., Merriman, R.J., & Roberts,B. (1994b) The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscovite-paragonite in a mudrock from central Wales, United Kingdom. Clays and Clay Minerals42(4), 369–381.
  • Livi, K.J.T., Veblen, D.R., Ferry, J.M., & Frey,M. (1997) Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland. Journal of Metamorphic Geology15(3), 323–344.
  • Marcos, A., Martínez-Catalán, J.R., Pérez-Estaún, A., & Pulgar,J.A. (2004) Características generales de la estructura de la Zona Asturoccidental-leonesa. InGeología de España ( Vera,J.A.ed.). SGE-IGME, Madrid, Spain ( 54–55 ).
  • Martínez-Catalán, J.R., Pérez-Estaún, A., Bastida, F., Pulgar, J.A., & Marcos,A. (1990) West Asturian-Leonese Zone. Structure. InPre-Mesozoic Geology of Iberia ( DallmeyerR.D.& Martínez-GarcíaE., eds.). Springer-Verlag, Berlin, Germany ( 103–114 ).
  • Mata, M.P., Giorgetti, G., Árkai, P., & Peacor,D.R. (2001) Comparison of evolution of trioctahedral chlorite/berthierine/smectite in coeval metabasites and metapelites from diagenetic to epizonal grades. Clays and Clay Minerals49(4), 318–332.
  • Merriman, R.J. (2002) Contrasting clay mineral assemblages in British Lower Palaeozoic slate belts: the influence of geotectonic setting. Clay Minerals37(2), 207–219.
  • Merriman, R.J. (2006) Clay mineral assemblages in British Lower Palaeozoic mudrocks. Clay Minerals41(1), 473–512.
  • Merriman, R.J. & Roberts,B. (1985) A survey of white mica crystallinity and polytypes in pelitic rocks of Snowdonia and Llŷn, North Wales. Mineralogical Magazine49(3), 305–319.
  • Merriman, R.J., Roberts, B., & Peacor,D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence. North Wales, UK. Contributions to Mineralogy & Petrology106(1), 27–40.
  • Moore, D.M. & Reynolds,R.C.,Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, England.
  • Nesbitt, H.W., Fedo, C.M., & Young,G.M. (1997) Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology105(2), 173–192.
  • Nieto, F. (1997) Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. European Journal of Mineralogy9, 829–842.
  • Nieto, F., Velilla, N., Peacor, D.R., & Huertas,M.O. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contributions to Mineralogy and Petrology115(3), 243–252.
  • Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. InMinerals and Reactions at the Atomic Scale: Transmission Electron Microscopy ( Buseck,P.R.ed.). Mineralogical Society of America, Washington, D.C. (335–380 ).
  • Pérez-Estaún, A., Bastida, F., Martínez-Catalán, J.R., Gutierrez Marco, J.C., Marcos, A., & Pulgar,J.A. (1990) West Asturian-Leonese zone. Stratigraphy. InPre-Mesozoic Geology of Iberia ( DallmeyerR.D.& Martínez-García,E.eds.). Springer-Verlag, Berlin, Germany ( 92–102 ).
  • Pérez-Estaún, A., Bea, F., Bastida, F., Marcos, A., Martínez-Catalán, J.R., Arenas, R., Díaz García, F., Azor, A., Simancas, J.F., & González Lodeiro,F. (2004) La Cordillera Varisca Europea: El Macizo Ibérico. InGeología de España ( Vera,J.A.ed.). SGE-IGME, Madrid, Spain.
  • Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography2, 65–71.
  • Robertson, I.D. & Eggleton,R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals39(2), 113–126.
  • Ruan, C.D. & Ward,C.R. (2002) Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Applied Clay Science21(5), 227–240.
  • Ruiz Cruz, M.D. (1997) Very low-grade chlorite with anomalous chemistry and optical properties from the Malaguide Complex, Betic Cordilleras, Spain. Canadian Mineralogist35(4), 923–935.
  • Sakharov, B.A., Lindgreen, H., Salyn, A.L., & Drits,V.A. (1999) Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals34(2), 333–344.
  • Suárez, O., Corretgé, L.G., & Martínez,F.J. (1990) West Asturian-Leonese Zone Distribution and characteristics of the Hercynian metamorphism. InPre-Mesozoic Geology of Iberia (R.D., Dallmeyer & Martínez-García,E.eds.). Springer-Verlag, Berlin, Germany (129–133).
  • Taylor, J.C. (1987) Comparison of Profile Decomposition and Rietveld Methods for Structural Refinement with Powder Diffraction Data. Zeitschrift für Kristallographie181, 151–160.
  • Taylor, J.C. (1991) Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction6, 2–9.
  • Tischendorf, G., Forster, H.J., Gottesmann, B., & Rieder,M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine71(3), 285–320.
  • Velilla, N. & Jiménez-Millán,J. (2003) Origin and metamorphic evolution of rocks with braunite and pyrophanite from the Iberian Massif (SW Spain). Mineralogy and Petrology78(1), 73–91.
  • Vicente, M.A., Elsass, F., Molina, E., & Robert,M. (1997) Paleoweathering in slates from the Iberian Hercynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Minerals32(3), 435–451.
  • Wagner, R.H. (2004) The Iberian Massif: A Carboniferous assembly. Journal of Iberian Geology30, 93–108.
  • Walsh, J.A. (2007) The use of the scanning electron microscope in the determination of the mineral composition of Ballachulish slate. Materials Characterization58(11), 1095–1103.
  • Ward, C.R. & Gómez-Fernández,F. (2003) Quantitative mineralogical analysis of Spanish roofing slates using the Rietveld method and X-ray powder diffraction data. European Journal of Mineralogy15(6), 1051–1062.
  • Ward, C.R. & French,D. (2005) Relation between coal and fly ash mineralogy, based on quantitative X-ray diffraction methods. InWorld Coal Ash (WOCA) 2005. April 11–15, Lexington, Kentucky, United States ( 14pp.).
  • Ward, C.R. & Taylor,J.C. (1996) Quantitative mineralogical analysis of coals from the Callide Basin, Queensland, Australia using Xray diffractometry and normative interpretation. International Journal of Coal Geology30(3), 211–229.
  • Ward, C.R., Taylor, J.C., & Cohen,D.R. (1999) Quantitative mineralogy of sandstones by X-ray diffractometry and normative analysis. Journal of Sedimentary Research69(5), 1050–1062.
  • Whitney, D.L. & Evans,B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist95(1), 185–187.