Recent Trends in Enzyme-Based Electrosensing Devices Modified with Nanomaterials

  1. Domínguez-Renedo, Olga
  2. Navarro-Cuñado, A. Marta
  3. Alonso-Lomillo, M. Asunción
Libro:
Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices
  1. Purohit, B. (ed. lit.)
  2. Chandra, P. (ed. lit.)

Editorial: Springer

ISBN: 9789819930241 9789819930258

Año de publicación: 2023

Páginas: 223-257

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-99-3025-8_10 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Enzyme-based electrochemical biosensors are analytical devices with great potential in various fields, thanks to their specificity, high sensitivity, and the possibility of automation and miniaturization. The analytical performance of these electrochemical devices can be remarkably improved by the employing of advanced nanomaterials due to the important features of these materials, including great effectiveness in electron transfer related to its high surface area and conductivity. This chapter reports the recent applications of different enzymatic biosensors based on the modification of the working electrode with nanomaterials, including fullerenes, graphene, carbon nanotubes (CNTs), carbon and graphene quantum dots (QDs), metallic nanoparticles (NPs), and inorganic QDs. The reported devices are categorized according to the target biomolecule, and their description has considered not only the nanomaterial used but also the type of electronic transfer that takes place (direct or mediated) as well as the enzymatic mechanism involved.

Referencias bibliográficas

  • Ahmad NM, Abdullah J, Yusof NA, Rashid AHA, Rahman SA, Hasan MR (2016) Amperometric biosensor based on zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds. Biosensors 6:31. https://doi.org/10.3390/BIOS6030031
  • Ahmad R, Tripathy N, Jang NK, Khang G, Hahn YB (2015) Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sensors Actuators B Chem 206:146–151. https://doi.org/10.1016/j.snb.2014.09.026
  • Aigner M, Kalcher K, Macheroux P, Lienhart WD, Wallner S, Edmondson D, Ortner A (2017) Determination of total monoamines in rat brain via nanotubes based human monoamine oxidase B biosensor. Electroanalysis 29:367–373. https://doi.org/10.1002/elan.201600326
  • Ajay RFI, Tshoko S, Mgwili Y, Nqunqa S, Mulaudzi T, Mayedwa N, Iwuoha E (2020) Green method synthesised graphene-silver electrochemical nanobiosensors for ethambutol and pyrazinamide. PRO 8:879. https://doi.org/10.3390/pr8070879
  • Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim Y-B (2018) Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron 116:108–115. https://doi.org/10.1016/j.bios.2018.05.049
  • Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A (2020) Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem 13:2001–2010. https://doi.org/10.1016/j.arabjc.2018.02.018
  • Albayati SAR, Kashanian S, Nazari M, Rezaei S (2019) Novel fabrication of a laccase biosensor to detect phenolic compounds using a carboxylated multiwalled carbon nanotube on the electropolymerized support. Bull Mater Sci 42:1–8. https://doi.org/10.1007/S12034-019-1850-0
  • Ali M, Khalid MAU, Kim YS, Soomro AM, Hussain S, Doh YH, Choi KH (2021) MWCNTs/PEDOT: PSS composite as guiding layer on screen-printed carbon electrode for linear range lactate detection. J Electrochem Soc 168:37507. https://doi.org/10.1149/1945-7111/ABEAEE
  • Ali M, Shah I, Kim SW, Sajid M, Lim JH, Choi KH (2018) Quantitative detection of uric acid through ZnO quantum dots based highly sensitive electrochemical biosensor. Sensors Actuators A Phys 283:282–290. https://doi.org/10.1016/j.sna.2018.10.009
  • Aliakbarinodehi N, De Micheli G, Carrara S (2016) Enzymatic and nonenzymatic electrochemical interaction of abiraterone (antiprostate cancer drug) with multiwalled carbon nanotube bioelectrodes. Anal Chem 88:9347–9350. https://doi.org/10.1021/acs.analchem.6b02747
  • Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2009) Enzyme modified screen printed electrodes. In: Biosensors: properties, materials and applications. Nova Science Publishers, New York
  • Apetrei IM, Apetrei C (2015) The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for assaying tyramine in fish products. J Food Eng 149:1–8. https://doi.org/10.1016/J.JFOODENG.2014.09.036
  • Apetrei IM, Apetrei C (2016) Amperometric biosensor based on diamine oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon electrode for histamine detection. Sensors 16:422. https://doi.org/10.3390/S16040422
  • Aydin EB, Aydin M, Sezginturk MK (2018) Biosensors in drug discovery and drug analysis. Curr Anal Chem 15:467–484. https://doi.org/10.2174/1573411014666180912131811
  • Bahadir EB, Sezgintürk MK (2015) Electrochemical biosensors for hormone analyses. Biosens Bioelectron 68:62–71. https://doi.org/10.1016/j.bios.2014.12.054
  • Barberis A, Spissu Y, Fadda A, Azara E, Bazzu G, Marceddu S, Angioni A, Sanna D, Schirra M, Serra PA (2015) Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens Bioelectron 67:214–223. https://doi.org/10.1016/j.bios.2014.08.019
  • Barsan MM, Pifferi V, Falciola L, Brett CMA (2016) New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors. Anal Chim Acta 927:35–45. https://doi.org/10.1016/j.aca.2016.04.049
  • Beilinson RM, Yavisheva AA, Medyantseva EP, Budnikov HC (2021) Amperometric tyrosinase biosensors modified by nanomaterials of different nature for determining diclofenac. J Anal Chem 76:653–659. https://doi.org/10.1134/S1061934821050075
  • Bekmezci SA, Soylemez S, Yilmaz G, Udum YA, Yagci Y, Toppare L (2019) A new ethanol biosensor based on polyfluorene-g-poly(ethylene glycol) and multiwalled carbon nanotubes. Eur Polym J 122:109300. https://doi.org/10.1016/j.eurpolymj.2019.109300
  • Bensana A, Achi F (2020) Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf. B 196:111344. https://doi.org/10.1016/J.COLSURFB.2020.111344
  • Bhushan P, Umasankar Y, RoyChoudhury S, Hirt PA, MacQuhaec FE, Borda LJ, Lev-Tov HA, Kirsner RS, Bhansali S (2019) Biosensor for monitoring uric acid in wound and its proximity: a potential wound diagnostic tool. J Electrochem Soc 166:B830–B836. https://doi.org/10.1149/2.1441910jes
  • Bilgi M, Ayranci E (2016) Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: ethanol biosensors based on alcohol dehydrogenase. Sensors Actuators B Chem 237:849–855. https://doi.org/10.1016/J.SNB.2016.06.164
  • Bilgi M, Ayranci E (2018) Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J Electroanal Chem 823:588–592. https://doi.org/10.1016/J.JELECHEM.2018.07.009
  • Bollella P, Hibino Y, Conejo-Valverde P, Soto-Cruz J, Bergueiro J, Calderón M, Rojas-Carrillo O, Kano K, Gorton L (2019) The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Anal Bioanal Chem 411:7645–7657. https://doi.org/10.1007/S00216-019-01944-6
  • Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R (2018) Enhanced direct electron transfer of fructose dehydrogenase rationally immobilized on a 2-aminoanthracene diazonium cation grafted single-walled carbon nanotube based electrode. ACS Catal 8:10279–10289. https://doi.org/10.1021/ACSCATAL.8B02729
  • Boujakhrout A, Jimenez-Falcao S, Martínez-Ruiz P, Sánchez A, Díez P, Pingarrón JM, Villalonga R (2016) Novel reduced graphene oxide–glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 141:4162–4169. https://doi.org/10.1039/C5AN02640G
  • Bounegru AV, Apetrei C (2020) Development of a novel electrochemical biosensor based on carbon nanofibers–gold nanoparticles–tyrosinase for the detection of ferulic acid in cosmetics. Sensors (Switzerland) 20:1–17. https://doi.org/10.3390/s20236724
  • Bravo I, Gutiérrez-Sánchez C, García-Mendiola T, Revenga-Parra M, Pariente F, Lorenzo E (2019) Enhanced performance of reagent-less carbon nanodots based enzyme electrochemical biosensors. Sensors 19:5576. https://doi.org/10.3390/S19245576
  • Briones M, Casero E, Petit-Domínguez MD, Ruiz MA, Parra-Alfambra AM, Pariente F, Lorenzo E, Vázquez L (2015) Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens Bioelectron 68:521–528. https://doi.org/10.1016/J.BIOS.2015.01.044
  • Briones M, Casero E, Vázquez L, Pariente F, Lorenzo E, Petit-Domínguez MD (2016b) Diamond nanoparticles as a way to improve electron transfer in sol–gel l-lactate biosensing platforms. Anal Chim Acta 908:141–149. https://doi.org/10.1016/J.ACA.2015.12.029
  • Briones M, Petit-Domínguez MD, Parra-Alfambra AM, Vázquez L, Pariente F, Lorenzo E, Casero E (2016a) Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111:93–99. https://doi.org/10.1016/J.BIOELECHEM.2016.05.007
  • Buenaventura AG, Buenaventura AGE, Yago ACC (2020) Urate oxidase (UOx)-copper oxide (CuO)-carbon polymer composite electrode for electrochemical detection of uric acid. Sci Diliman 32:42–76
  • Castrignanò S, Gilardi G, Sadeghi SJ (2015) Human flavin-containing monooxygenase 3 on graphene oxide for drug metabolism screening. Anal Chem 87:2974–2980. https://doi.org/10.1021/ac504535y
  • Cerrato-Alvarez M, Bernalte E, Bernalte-García MJ, Pinilla-Gil E (2019) Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 193:93–99. https://doi.org/10.1016/J.TALANTA.2018.09.093
  • Chandra P, Das D, Abdelwahab AA (2010) Gold nanoparticles in molecular diagnostics and therapeutics. Dig J Nanomater Biostruct 5:363–367
  • Chandra P, Prakash R (2020) Nanobiomaterial engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9840-8
  • Chekin F, Gorton L, Tapsobea I (2015) Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor. Anal Bioanal Chem 407:439–446. https://doi.org/10.1007/s00216-014-8282-x
  • Chen Y, Zhou W, Ma J, Ruan F, Qi X, Cai Y (2020) Potential of a sensitive uric acid biosensor fabricated using hydroxyapatite nanowire/reduced graphene oxide/gold nanoparticle. Microsc Res Tech 83:268–275. https://doi.org/10.1002/jemt.23410
  • Chinnadayyala SR, Santhosh M, Singh NK, Goswami P (2015) Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor. Biosens Bioelectron 69:155–161. https://doi.org/10.1016/j.bios.2015.02.015
  • Chokkareddy R, Bhajanthri NK, Redhi GG (2017) An enzyme-induced novel biosensor for the sensitive electrochemical determination of isoniazid. Biosensors 7:21. https://doi.org/10.3390/bios7020021
  • Chokkareddy R, Bhajanthri NK, Redhi GG (2018) A novel electrochemical biosensor for the detection of ethambutol. Indian J Chem -Section A 57:887–895
  • Chou JC, Lin SH, Kuo PY, Lai CH, Nien YH, Lai TY, Su TY (2019) A sensitive potentiometric biosensor using MBs-AO/GO/ZnO membranes-based arrayed screen-printed electrodes for AA detection and remote monitoring. IEEE Access 7:105962–105972. https://doi.org/10.1109/ACCESS.2019.2931773
  • Cincotto FH, Canevari TC, Machado SAS, Sánchez A, Barrio MAR, Villalonga R, Pingarrón JM (2015) Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta 174:332–339. https://doi.org/10.1016/j.electacta.2015.06.013
  • Coelho JH, Eisele APP, Valezi CF, Mattos GJ, Schirmann JG, Dekker RFH, Barbosa-Dekker AM, Sartori ER (2019) Exploring the exocellular fungal biopolymer botryosphaeran for laccase-biosensor architecture and application to determine dopamine and spironolactone. Talanta 204:475–483. https://doi.org/10.1016/j.talanta.2019.06.033
  • Dagar K, Pundir CS (2017) An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzym Microb Technol 96:177–186. https://doi.org/10.1016/J.ENZMICTEC.2016.10.014
  • Dagar K, Pundir CS (2018) Dataset on fabrication of an improved L-lactate biosensor based on lactate oxidase/cMWCNT/CuNPs/PANI modified PG electrode. Data Br 17:1163–1167. https://doi.org/10.1016/J.DIB.2018.02.010
  • Dalkıran B, Erden PE, Kaçar C, Kılıç E (2019) Disposable Amperometric biosensor based on poly-L-lysine and Fe3O4 NPs-chitosan composite for the detection of tyramine in cheese. Electroanalysis 31:1324–1333. https://doi.org/10.1002/ELAN.201900092
  • Dalkıran B, Kaçar C, Can E, Erden PE, Kılıç E (2020) Disposable biosensors based on platinum nanoparticle-modified screen-printed carbon electrodes for the determination of biogenic amines. Monatsh Chem 151:1773–1783. https://doi.org/10.1007/S00706-020-02707-1
  • Dhanjai, Sinha A, Wu L, Lu X, Chen J, Jain R (2018) Advances in sensing and biosensing of bisphenols: a review. Anal Chim Acta. https://doi.org/10.1016/j.aca.2017.09.048
  • Dhull V, Gahlaut A, Hooda V (2021) Nanomaterials based biosensors for the detection of organophosphate compounds: a review. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1924162
  • Dhyani H, Ali MA, Pal SP, Srivastava S, Solanki PR, Malhotra BD, Sen P (2015) Mediator-free biosensor using chitosan capped CdS quantum dots for detection of total cholesterol †. https://doi.org/10.1039/c5ra07012k
  • Dimcheva N (2020) Nanostructures of noble metals as functional materials in biosensors. Curr Opin Electrochem 19:35–41. https://doi.org/10.1016/J.COELEC.2019.09.008
  • Dong W, Han J, Shi J, Liang W, Zhang Y, Dong C (2017) Amperometric biosensor for detection of phenolic compounds based on tyrosinase, N-acetyl-L-cysteine-capped gold nanoparticles and chitosan nanocomposite. Chin J Chem 35:1305–1310. https://doi.org/10.1002/CJOC.201600728
  • Duarte RR, Giarola JF, Silva DN, Saczk AA, Tarley CRT, Ribeiro ES, Pereira AC (2021) Development of electrochemical HRP-MWCNT-based screen-printed biosensor for the determination of phenolic compounds in effluent from washing coffee beans. Rev Virtual Quím 13:43–60. https://doi.org/10.21577/1984-6835.20200129
  • Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G (2016) Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors. Biosens Bioelectron 86:308–314. https://doi.org/10.1016/J.BIOS.2016.06.003
  • Erden PE, Kaçar C, Öztürk F, Kiliç E (2015) Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta 134:488–495. https://doi.org/10.1016/j.talanta.2014.11.058
  • Erdogan ZO, Kucukkolbası S (2021) Fabrication of an electrochemical biosensor based on Fe3O4 nanoparticles and uricase modified carbon paste electrode for uric acid determination. Monatsh Chem 152:309–314. https://doi.org/10.1007/s00706-021-02749-z
  • Erkmen C, Demir Y, Kurbanoglu S, Uslu B (2021) Multi-purpose electrochemical tyrosinase nanobiosensor based on poly (3,4 ethylenedioxythiophene) nanoparticles decorated graphene quantum dots: applications to hormone drugs analyses and inhibition studies. Sensors Actuators B Chem 343:130164. https://doi.org/10.1016/j.snb.2021.130164
  • Fartas FM, Abdullah J, Yusof NA, Sulaiman Y, Saiman MI (2017) Biosensor based on tyrosinase immobilized on graphene-decorated gold nanoparticle/chitosan for phenolic detection in aqueous. Sensors 17:1132. https://doi.org/10.3390/S17051132
  • de Fátima Giarola J, Mano V, Pereira AC (2018) Development and application of a voltammetric biosensor based on polypyrrole/uricase/graphene for uric acid determination. Electroanalysis 30:119–127. https://doi.org/10.1002/elan.201700538
  • Feleni U, Sidwaba U, Makelane H, Iwuoha E (2019) Core–shell palladium telluride quantum dot-hemethiolate cytochrome based biosensor for detecting indinavir drug. J Nanosci Nanotechnol 19:7974–7981. https://doi.org/10.1166/jnn.2019.16866
  • Feleni U, Sidwaba U, Ntshongontshi N, Wilson L, Iwuoha E (2020) Biocompatible palladium telluride quantum dot-amplified biosensor for HIV drug. Electrocatalysis 11:68–76. https://doi.org/10.1007/s12678-019-00563-0
  • Feng B, Liu YN (2015) A disposable cholesterol enzyme biosensor based on ferrocene-capped gold nanoparticle modified screen-printed carbon electrode. Int J Electrochem, Sci
  • Filipiak MS, Vetter D, Thodkar K, Gutiérrez-Sanz O, Jönsson-Niedziółka M, Tarasov A (2020) Electron transfer from FAD-dependent glucose dehydrogenase to single-sheet graphene electrodes. Electrochim Acta 330:134998. https://doi.org/10.1016/J.ELECTACTA.2019.134998
  • Fukuda T, Muguruma H, Iwasa H, Tanaka T, Hiratsuka A, Shimizu T, Tsuji K, Kishimoto T (2020) Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube/carboxymethylcellulose electrode. Anal Biochem 590:113533. https://doi.org/10.1016/j.ab.2019.113533
  • Ghanei D, Kaariz A, Elham SM (2020) Fabrication of Au/ZnO/MWCNTs electrode and its characterization for electrochemical cholesterol biosensor. J Theor Appl Phys 14:339–348. https://doi.org/10.1007/s40094-020-00390-5
  • Gholivand MB, Khodadadian M (2014) Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens Bioelectron 53:472–478. https://doi.org/10.1016/J.BIOS.2013.09.074
  • Giri AK, Charan C, Ghosh SC, Shahi VK, Panda AB (2016) Phase and composition selective superior cholesterol sensing performance of ZnO@ZnS nano-heterostructure and ZnS nanotubes. Sensors Actuators B Chem 229:14–24. https://doi.org/10.1016/J.SNB.2016.01.060
  • Gómez-Anquela C, García-Mendiola T, Abad JM, Pita M, Pariente F, Lorenzo E (2015) Scaffold electrodes based on thioctic acid-capped gold nanoparticles coordinated alcohol dehydrogenase and azure a films for high performance biosensor. Bioelectrochemistry 106:335–342. https://doi.org/10.1016/j.bioelechem.2015.06.009
  • Gu H, Xing Y, Xiong P, Tang H, Li C, Chen S, Zeng R, Han K, Shi G (2019) Three-dimensional porous Ti3C2Tx MXene–graphene hybrid films for glucose biosensing. ACS Appl Nano Mater 2:6537–6545. https://doi.org/10.1021/acsanm.9b01465
  • Guarda A, Maciel JV, Wiethan BA, Schneider A, do Nascimento PC, Dias D (2017) Simultaneous determination of ethanethiol, inorganic sulfide, and sulfite in wines by cathodic stripping voltammetry. Food Anal Methods 10:837–844. https://doi.org/10.1007/s12161-016-0640-1
  • Han B, Pan M, Liu X, Liu J, Cui T, Chen Q (2019) Electrochemical detection for uric acid based on β-lactoglobulin-functionalized multiwall carbon nanotubes synthesis with PtNPs nanocomposite. Materials (Basel) 12:214. https://doi.org/10.3390/ma12020214
  • Han E, Yang Y, He Z, Cai J, Zhang X, Dong X (2015) Development of tyrosinase biosensor based on quantum dots/chitosan nanocomposite for detection of phenolic compounds. Anal Biochem 486:102–106. https://doi.org/10.1016/J.AB.2015.07.001
  • Hao Y, Fang M, Xu C, Ying Z, Wang H, Zhang R, Cheng HM, Zeng Y (2021) A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection. J Mater Sci Technol 66:57–63. https://doi.org/10.1016/J.JMST.2020.04.070
  • He Y, Yang X, Han Q, Zheng J (2017) The investigation of electrochemistry behaviors of tyrosinase based on directly-electrodeposited grapheneon choline-gold nanoparticles. Molecules 22:1047. https://doi.org/10.3390/MOLECULES22071047
  • Hernandez HD, Dominguez RB, Gutierrez JM (2021) Design and development of a biosensor for uric acid detection based on self-assembled monolayers (SAMs) made on screen-printed gold electrodes. In Pan American Health Care Exchanges, PAHCE. IEEE Computer Society. https://doi.org/10.1109/GMEPE/PAHCE50215.2021.9434856
  • Hernández-Cancel G, Suazo-Dávila D, Medina-Guzmán J, Rosado-González M, Díaz-Vázquez LM, Griebenow K (2015) Chemically glycosylation improves the stability of an amperometric horseradish peroxidase biosensor. Anal Chim Acta 854:129–139. https://doi.org/10.1016/j.aca.2014.11.008
  • Hibino Y, Kawai S, Kitazumi Y, Shirai O, Kano K (2017) Construction of a protein-engineered variant of d-fructose dehydrogenase for direct electron transfer-type bioelectrocatalysis. Electrochem Commun 77:112–115. https://doi.org/10.1016/J.ELECOM.2017.03.005
  • Hooda V, Gahlaut A, Hooda V (2020) A novel amperometric biosensor for rapid detection of ethanol utilizing gold nanoparticles and enzyme coupled PVC reaction cell. Environ Technol. https://doi.org/10.1080/09593330.2020.1726472
  • Hooda V, Kumar V, Gahlaut A, Hooda V (2018a) Alcohol quantification: recent insights into amperometric enzyme biosensors. Artif Cells Nanomedicine Biotechnol. https://doi.org/10.1080/21691401.2017.1315426
  • Hooda V, Kumar V, Gahlaut A, Hooda V (2018b) A novel amperometric bienzymatic biosensor based on alcohol oxidase coupled PVC reaction cell and nanomaterials modified working electrode for rapid quantification of alcohol. Prep Biochem Biotechnol 48:877–886. https://doi.org/10.1080/10826068.2018.1514515
  • Hu H, Wang B, Li Y, Wang P, Yang L (2020) Acetylcholinesterase sensor with patterned structure for detecting organophosphorus pesticides based on titanium dioxide sol-gel carrier. Electroanalysis 32:1834–1842. https://doi.org/10.1002/elan.202060027
  • Hua Z, Qin Q, Bai X, Huang X, Zhang Q (2016) An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol. RSC Adv 6:25427–25434. https://doi.org/10.1039/C5RA27563F
  • Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, Zheng R, Xue Y, Zhang M, Li S, Zhu N, Liang J, Li G, Zhong L, Zhao Y (2018) Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron 102:560–567. https://doi.org/10.1016/J.BIOS.2017.11.037
  • Inamuddin, Shakeel N, Ahamed MI, Kanchi S, Kashmery HA (2020) Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-61831-4
  • Jain S, Verma S, Singh SP, Sharma SN (2019) An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection. Biosens Bioelectron 127:135–141. https://doi.org/10.1016/j.bios.2018.12.008
  • Jayanthi KG, Suja SK (2020) Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzym Microb Technol 140:109631. https://doi.org/10.1016/J.ENZMICTEC.2020.109631
  • Jia L, Zhou Y, Wu K, Feng Q, Wang C, He P (2020) Acetylcholinesterase modified AuNPs-MoS2-rGO/PI flexible film biosensor: towards efficient fabrication and application in paraoxon detection. Bioelectrochemistry 131:107392. https://doi.org/10.1016/j.bioelechem.2019.107392
  • Jiaojiao X, Bin Z, Pengyun W, Qing L, Xin S, Rui J (2020) Acetylcholinesterase biosensors based on ionic liquid functionalized carbon nanotubes and horseradish peroxidase for monocrotophos determination. Bioprocess Biosyst Eng 43:293–301. https://doi.org/10.1007/s00449-019-02226-2
  • Jirakunakorn R, Khumngern S, Choosang J, Thavarungkul P, Kanatharana P, Numnuam A (2020) Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel. Microchem J 154:104624. https://doi.org/10.1016/j.microc.2020.104624
  • Juska VB, Pemble ME (2020) A critical review of electrochemical glucose sensing: evolution of biosensor platforms based on advanced nanosystems. Sensors (Switzerland) 20:1–28. https://doi.org/10.3390/S20216013
  • Kaçar C, Erden PE (2020) An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal Bioanal Chem 412:5315–5327. https://doi.org/10.1007/s00216-020-02747-w
  • Kaçar C, Erden PE, Dalkiran B, İnal EK, Kiliç E (2020) Amperometric biogenic amine biosensors based on Prussian blue, indium tin oxide nanoparticles and diamine oxidase– or monoamine oxidase–modified electrodes. Anal Bioanal Chem 412:1933–1946. https://doi.org/10.1007/S00216-020-02448-4
  • Kaida Y, Hibino Y, Kitazumi Y, Shirai O, Kano K (2020) Discussion on direct electron transfer-type bioelectrocatalysis of downsized and axial-ligand exchanged variants of d-fructose dehydrogenase. Electrochemistry 88:195–199. https://doi.org/10.5796/ELECTROCHEMISTRY.20-00029
  • Karadurmus L, Kaya SI, Ozkan SA (2021) Recent advances of enzyme biosensors for pesticide detection in foods. J Food Meas Charact 15. https://doi.org/10.1007/s11694-021-01032-3
  • Kawai S, Kitazumi Y, Shirai O, Kano K (2016) Bioelectrochemical characterization of the reconstruction of heterotrimeric fructose dehydrogenase from its subunits. Electrochim Acta 210:689–694. https://doi.org/10.1016/J.ELECTACTA.2016.05.193
  • Kizling M, Rekorajska A, Krysinski P, Bilewicz R (2018) Magnetic-field-induced orientation of fructose dehydrogenase on iron oxide nanoparticles for enhanced direct electron transfer. Electrochem Commun 93:66–70. https://doi.org/10.1016/J.ELECOM.2018.06.010
  • Koçoğlu İO, Erden PE, Kılıç E (2020) Disposable biogenic amine biosensors for histamine determination in fish. Anal Methods 12:3802–3812. https://doi.org/10.1039/D0AY00802H
  • Komathi S, Muthuchamy N, Lee KP, Gopalan AI (2016) Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens Bioelectron 84:64–71. https://doi.org/10.1016/J.BIOS.2015.11.042
  • Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV (2019) Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Adv 1:4560–4577. https://doi.org/10.1039/c9na00491b
  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648. https://doi.org/10.1016/j.bios.2011.05.039
  • Kumar A, Mahato K, Purohit B, Chandra P (2022) Commercial aspects and market pull of biosensors in diagnostic industries. In: Miniaturized biosensing devices. Springer Verlag, Singapore, pp 351–368. https://doi.org/10.1007/978-981-16-9897-2_15
  • Kumar A, Purohit B, Mahato K, Mahapatra S, Srivastava A, Chandra P (2020) Bio-nano-interface engineering strategies of AuNPs passivation for next-generation biomedical applications. In: Biointerface engineering: prospects in medical diagnostics and drug delivery. Springer Verlag, Singapore. https://doi.org/10.1007/978-981-15-4790-4_10
  • Kurbanoglu S, Mayorga-Martinez CC, Medina-Sánchez M, Rivas L, Ozkan SA, Merkoçi A (2015) Antithyroid drug detection using an enzyme cascade blocking in a nanoparticle-based lab-on-a-chip system. Biosens Bioelectron 67:670–676. https://doi.org/10.1016/j.bios.2014.10.014
  • Kurbanoglu S, Ozkan SA, Merkoçi A (2017a) Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens Bioelectron 89:886–898. https://doi.org/10.1016/J.BIOS.2016.09.102
  • Kurbanoglu S, Rivas L, Ozkan SA, Merkoçi A (2017b) Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosens Bioelectron 88:122–129. https://doi.org/10.1016/j.bios.2016.07.109
  • Lata K, Dhull V, Hooda V (2016) Fabrication and optimization of ChE/ChO/HRP-AuNPs/c-MWCNTs based silver electrode for determining total cholesterol in serum. Biochem Res Int 2016. https://doi.org/10.1155/2016/1545206
  • Lawal AT (2018) Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 106:149–178. https://doi.org/10.1016/J.BIOS.2018.01.030
  • Li M, Wang L, Liu R, Li J, Zhang Q, Shi G, Li Y, Hou C, Wang H (2021) A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens Bioelectron 174:112828. https://doi.org/10.1016/J.BIOS.2020.112828
  • Li Z, Xie C, Wang J, Meng A, Zhang F (2015) Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sensors Actuators B Chem 208:505–511. https://doi.org/10.1016/J.SNB.2014.11.054
  • Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2016.04.019
  • Lipińska W, Grochowska K, Siuzdak K (2021) Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials. https://doi.org/10.3390/nano11051156
  • Liu X, Sakthivel R, Liu WC, Huang CW, Li J, Xu C, Wu Y, Song L, He W, Chung RJ (2020) Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase. Food Chem 324:126889. https://doi.org/10.1016/j.foodchem.2020.126889
  • Loaiza OA, Lamas-Ardisana PJ, Añorga L, Jubete E, Ruiz V, Borghei M, Cabañero G, Grande HJ (2015) Graphitized carbon nanofiber–Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 101:58–65. https://doi.org/10.1016/J.BIOELECHEM.2014.07.005
  • Loguercio LF, Thesing A, Demingos P, de Albuquerque CDL, Rodrigues RSB, Brolo AG, Santos JFL (2021) Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2021.129875
  • Long L, Luo Y, Liu B, Du D, Lin Y (2015) Screening of antidote sensitivity using an acetylcholinesterase biosensor based on a graphene-Au nanocomposite. RSC Adv 5:4894–4897. https://doi.org/10.1039/c4ra14085k
  • Ma J, Xu J, Yang C, Song J, Fu Y (2018) An ascorbic acid oxidase-based sensing platform for stereoselective interaction with ascorbic acid and isoascorbic acid. Anal Sci 34:427–432. https://doi.org/10.2116/analsci.17P304
  • Ma L, Yue Z, Huo G, Zhang S, Zhu B, Zhang S, Huang W (2020) 3D hydrogen titanate nanotubes on Ti foil: a carrier for enzymatic glucose biosensor. Sensors 20:1024. https://doi.org/10.3390/S20041024
  • Mahato K, Kumar A, Purohit B, Baranwal A, Goud KY, Chandra P (2022) Onsite quality controls for food safety based on miniaturized biosensing. In: Miniaturized biosensing devices. Springer Verlag, Singapore, pp 251–272. https://doi.org/10.1007/978-981-16-9897-2_11
  • Mahato K, Kumar A, Purohit B, Mahapatra S, Srivastava A, Chandra P (2020) Nanomaterial functionalization strategies in bio-interface development for modern diagnostic devices. In: Biointerface engineering: prospects in medical diagnostics and drug delivery. Springer Verlag, Singapore. https://doi.org/10.1007/978-981-15-4790-4_9
  • Mahato K, Prasad A, Maurya P, Chandra P (2016) Nanobiosensors: next generation point-of-care biomedical devices for personalized diagnosis. J Anal Bioanal Tech 7:e125
  • Maleki N, Kashanian S, Nazari M, Shahabadi N (2019) A novel sensitive laccase biosensor using gold nanoparticles and poly L-arginine to detect catechol in natural water. Biotechnol Appl Biochem 66:502–509. https://doi.org/10.1002/BAB.1746
  • Martín M, Salazar P, Campuzano S, Villalonga R, Pingarrón JM, González-Mora JL (2015) Amperometric magnetobiosensors using poly(dopamine)-modified Fe3O4 magnetic nanoparticles for the detection of phenolic compounds. Anal Methods 7:8801–8808. https://doi.org/10.1039/C5AY01996F
  • Mazlan SZ, Lee YH, Hanifah SA (2017) A new laccase based biosensor for tartrazine. Sensors (Switzerland) 17:2859. https://doi.org/10.3390/s17122859
  • Medyantseva EP, Brusnitsyn DV, Varlamova RM, Beshevets MA, Budnikov HC, Fattakhova AN (2015a) Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants. J Anal Chem 70:535–539. https://doi.org/10.1134/S106193481505010X
  • Medyantseva EP, Brusnitsyn DV, Varlamova RM, Maksimov AA, Fattakhova AN, Konovalova OA, Budnikov GK (2015b) Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors. Russ J Appl Chem 88:40–49. https://doi.org/10.1134/S1070427215010073
  • Medyantseva EP, Brusnitsyn DV, Varlamova RM, Maksimov AA, Konovalova OA, Budnikov HC (2017) Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants. J Anal Chem 72:305–313. https://doi.org/10.1134/S1061934817040086
  • Mendes RK, Arruda BS, De Souza EF, Nogueira AB, Teschke O, Bonugli LO, Etchegaray A (2017) Determination of chlorophenol in environmental samples using a voltammetric biosensor based on hybrid nanocomposite. J Braz Chem Soc 28:1212–1219. https://doi.org/10.21577/0103-5053.20160282
  • Mohiuddin M, Arbain D, Islam AKM, Rahman M, Ahmad MS, Ahmad MN (2014) Electrochemical measurement of antidiabetic potential of medicinal plants using screen-printed carbon nanotubes electrode. Curr Nanosci 11:229–238. https://doi.org/10.2174/1573413711666141209234531
  • Mohiuddin M, Arbain D, Islam AKMS, Ahmad MS, Ahmad MN (2016) Alpha-glucosidase enzyme biosensor for the electrochemical measurement of antidiabetic potential of medicinal plants. Nanoscale Res Lett 11:1–12. https://doi.org/10.1186/s11671-016-1292-1
  • Mokwebo KV, Oluwafemi OS, Arotiba OA (2018) An electrochemical cholesterol biosensor based on a CdTe/CdSe/ZnSe quantum dots—poly (propylene imine) dendrimer nanocomposite immobilisation layer. Sensors 18:3368. https://doi.org/10.3390/S18103368
  • Moonla C, Preechaworapun A, Tangkuaram T (2017) A single drop fabrication of the cholesterol biosensor based on synthesized NiFe2O4NPs dispersed on PDDA-CNTs. Electroanalysis 29:2698–2707. https://doi.org/10.1002/ELAN.201700286
  • Muthurasu A, Ganesh V (2016) Glucose oxidase stabilized fluorescent gold nanoparticles as an ideal sensor matrix for dual mode sensing of glucose. RSC Adv 6:7212–7223. https://doi.org/10.1039/c5ra22477b
  • Nandini S, Nalini S, Reddy MBM, Suresh GS, Melo JS, Niranjana P, Sanetuntikul J, Shanmugam S (2016) Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing. Bioelectrochemistry 110:79–90. https://doi.org/10.1016/J.BIOELECHEM.2016.03.006
  • Nantaphol S, Chailapakul O, Siangproh W (2015) A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal Chim Acta 891:136–143. https://doi.org/10.1016/J.ACA.2015.08.007
  • Nazari M, Kashanian S, Maleki N, Shahabadi N (2019) Laccase immobilized onto graphene oxide nanosheets and electrodeposited gold–cetyltrimethylammonium bromide complex to fabricate a novel catechol biosensor. Bull Mater Sci 42:1–10. https://doi.org/10.1007/s12034-018-1717-9
  • Ndangili PM, Jijana AM, Baker PGL, Iwuoha EI (2011) 3-Mercaptopropionic acid capped ZnSe quantum dot-cytochrome P450 3A4 enzyme biotransducer for 17β-estradiol. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2010.12.029
  • Okawa Y, Shimada T, Shiba F (2018) Formation of gold-silver hollow nanostructure via silver halide photographic processes and application to direct electron transfer biosensor using fructose dehydrogenase. J Electroanal Chem 828:144–149. https://doi.org/10.1016/J.JELECHEM.2018.09.044
  • Omar MN, Salleh AB, Lim HN, Tajudin AA (2016) Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal Biochem 509:135–141. https://doi.org/10.1016/j.ab.2016.06.030
  • Othman AM, Wollenberger U (2020) Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection. Int J Biol Macromol 153:855–864. https://doi.org/10.1016/J.IJBIOMAC.2020.03.049
  • Pavinatto A, Mercante LA, Facure MHM, Pena RB, Sanfelice RC, Mattoso LHC, Correa DS (2018) Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17α – Ethinylestradiol electrochemical detection. Appl Surf Sci 458:431–437. https://doi.org/10.1016/j.apsusc.2018.07.035
  • Pavlidis IV, Patila M, Bornscheuer UT, Gournis D, Stamatis H (2014) Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol 32:312–320. https://doi.org/10.1016/j.tibtech.2014.04.004
  • Peng B, Cui J, Wang Y, Liu J, Zheng H, Jin L, Zhang X, Zhang Y, Wu Y (2018) CeO2-: X/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 10:1939–1945. https://doi.org/10.1039/c7nr08858b
  • Phetsang S, Jakmunee J, Mungkornasawakul P, Laocharoensuk R, Ounnunkad K (2019) Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 127:125–135. https://doi.org/10.1016/J.BIOELECHEM.2019.01.008
  • Pilehvar S, De Wael K (2015) Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms. Biosensors 5:712–735. https://doi.org/10.3390/bios5040712
  • Piotrowski P, Jakubow K, Kowalewska B, Kaim A (2017) Dioxygen insensitive C-70/AuNPs hybrid system for rapid and quantitative glucose biosensing. RSC Adv 7:45634–45640. https://doi.org/10.1039/c7ra07958c
  • Pohanka M (2021) Glucose electrochemical biosensors: the past and current trends. Int J Electrochem Sci 16:210719. https://doi.org/10.20964/2021.07.52
  • Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, Machado SAS, Pingarrón JM, Villalonga R (2017) Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 89:343–351. https://doi.org/10.1016/j.bios.2016.07.018
  • Pramanik K, Sarkar P, Bhattacharyay D, Majumdar P (2018) One step electrode fabrication for direct electron transfer cholesterol biosensor based on composite of polypyrrole, green reduced graphene oxide and cholesterol oxidase. Electroanalysis 30:2719–2730. https://doi.org/10.1002/ELAN.201800318
  • Pu ZH, Zhang XG, Yu HX, Tu JA, Chen HL, Liu YC, Su X, Wang RD, Zhang L, Li DC (2021) A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci Adv 7. https://doi.org/10.1126/sciadv.abd0199
  • Pundir CS, Malik A, Preety (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348. https://doi.org/10.1016/j.bios.2019.111348
  • Purohit B, Kumar A, Mahato K, Chandra P (2022) Continuous glucose monitoring for diabetes management based on miniaturized biosensors. In: Miniaturized biosensing devices. Springer Verlag, Singapore, pp 149–175. https://doi.org/10.1007/978-981-16-9897-2_7
  • Rahim MZA, Govender-Hondros G, Adeloju SB (2018) A single step electrochemical integration of gold nanoparticles, cholesterol oxidase, cholesterol esterase and mediator with polypyrrole films for fabrication of free and total cholesterol nanobiosensors. Talanta 189:418–428. https://doi.org/10.1016/J.TALANTA.2018.06.041
  • Rashidi K, Mahmoudi M, Mohammadi G, Zangeneh MM, Korani S, Goicoechea HC, Gu HW, Jalalvand AR (2018) Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. Int J Biol Macromol 120:587–595. https://doi.org/10.1016/J.IJBIOMAC.2018.08.163
  • Ratautas D, Dagys M (2019) Nanocatalysts containing direct electron transfer-capable oxidoreductases: recent advances and applications. Catalysts 10:9. https://doi.org/10.3390/CATAL10010009
  • Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54. https://doi.org/10.1016/J.BBREP.2015.11.010
  • Rattu G, Khansili N, Maurya VK, Krishna PM (2021) Lactate detection sensors for food, clinical and biological applications: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01106-6
  • Rawat K, Sharma A, Solanki PR, Bohidar HB (2015) Potential of gelatin-zinc oxide nanocomposite as ascorbic acid sensor. Electroanalysis 27:2448–2457. https://doi.org/10.1002/elan.201500090
  • Ribovski L, dos Santos FA, Zucolotto V, Janegitz BC (2019) Gold nanorods and poly(amido amine) dendrimer thin film for biosensing. J Solid State Electrochem 23:1581–1591. https://doi.org/10.1007/s10008-019-04247-z
  • Salazar P, Martín M, González-Mora JL (2019) In situ electrodeposition of cholesterol oxidase-modified polydopamine thin film on nanostructured screen printed electrodes for free cholesterol determination. J Electroanal Chem 837:191–199. https://doi.org/10.1016/J.JELECHEM.2019.02.032
  • Samphao A, Kunpatee K, Prayoonpokarach S, Wittayakun J, Švorc Ľ, Stankovic DM, Zagar K, Ceh M, Kalcher K (2015) An ethanol biosensor based on simple immobilization of alcohol dehydrogenase on Fe3O4@au nanoparticles. Electroanalysis 27:2829–2837. https://doi.org/10.1002/elan.201500315
  • Santos AS, Costa VC, Felício RC (2015) Comparative study of nanostructured matrices employed in the development of biosensors based on HRP enzyme for determination of phenolic compounds. Electroanalysis 27:1572–1578. https://doi.org/10.1002/ELAN.201400730
  • Santos VM, Ribeiro RSA, Bosco AJT, Alhadeff EM, Bojorge NI (2017) Characterization and evaluation of silver-nanoparticle-incorporated in composite graphite aiming at their application in biosensors*. Braz J Chem Eng 34:647–657. https://doi.org/10.1590/0104-6632.20170343S20150649
  • Sarika C, Shivakumar MS, Shivakumara C, Krishnamurthy G, Murthy BN, Lekshmi IC (2017) A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode. Artif Cells Nanomed Biotechnol 45:625–634. https://doi.org/10.3109/21691401.2016.1167702
  • Satvekar RK, Pawar SH (2018) Multienzymatic cholesterol nanobiosensor using core–shell nanoparticles incorporated silica nanocomposite. J Med Biol Eng 38:735–743. https://doi.org/10.1007/s40846-017-0345-y
  • Satvekar RK, Tiwari AP, Rohiwal SS, Tiwale BM, Pawar SH (2015) A DNA-assembled Fe3O4@Ag nanorod in silica matrix for cholesterol biosensing. J Mater Eng Perform 24:4691–4695. https://doi.org/10.1007/s11665-015-1532-z
  • Sethuraman V, Muthuraja P, Raj JA, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide–metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119. https://doi.org/10.1016/j.bios.2015.12.074
  • Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036. https://doi.org/10.1002/elan.200900571
  • Sharma D, Lee J, Seo J, Shin H (2017) Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles. Sensors 17:2128. https://doi.org/10.3390/S17092128
  • Sharma R, Sinha RK, Agrawal VV (2015) Mediator-free total cholesterol estimation using a bi-enzyme functionalized nanostructured gold electrode. RSC Adv 5:41786–41794. https://doi.org/10.1039/c5ra03053f
  • Siddeeg SM, Alsaiari NS, Tahoon MA, Rebah FB (2020) The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid: review. Int J Electrochem Sci 15:3327–3346. https://doi.org/10.20964/2020.04.13
  • Singh AP, Balayan S, Hooda V, Sarin RK, Chauhan N (2020) Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int J Biol Macromol 164:3943–3952. https://doi.org/10.1016/J.IJBIOMAC.2020.08.215
  • Soulis D, Trigazi M, Tsekenis G, Chandrinou C, Klinakis A, Zergioti I (2020) Facile and low-cost spe modification towards ultra-sensitive organophosphorus and carbamate pesticide detection in olive oil. Molecules 25:4988. https://doi.org/10.3390/molecules25214988
  • Soylemez S, Goker S, Toppare L (2019) A newly designed anthracene and isoindigo based polymer: synthesis, electrochemical characterization and biosensor applications. New J Chem 43:13979–13984. https://doi.org/10.1039/c9nj02546d
  • Spychalska K, Baluta S, Świst A, Cabaj J (2020) Biosensors for β17-estradiol detection based on graphene quantum dots (GQDs)/conducting polymer and laccase modified platinum/gold electrodes. Int J Electrochem Sci 15:3127–3142. https://doi.org/10.20964/2020.04.37
  • Stanković DM, Ognjanović M, Jović M, Cuplić V, Lesch A, Girault HH, Jankulović MG, Antić B (2019) Disposable biosensor based on amidase/CeO2/GNR modified inkjet-printed CNT electrodes-droplet based paracetamol detection in biological fluids for “point-of-care” applications. Electroanalysis 31:1534–1542. https://doi.org/10.1002/elan.201900129
  • Suganthi G, Ramanathan G, Arockiadoss T, Sivagnanam UT (2016) Facile synthesis of chitosan-capped ZnS nanoparticles as a soft biomimetic material in biosensing applications. Process Biochem 51:845–853. https://doi.org/10.1016/J.PROCBIO.2016.04.001
  • Sun C, Wang D, Zhang M, Ni Y, Shen X, Song Y, Geng Z, Xu W, Liu F, Mao C (2015a) Novel L-lactic acid biosensors based on conducting polypyrrole-block copolymer nanoparticles. Analyst 140:797–802. https://doi.org/10.1039/C4AN01602E
  • Sun L, Liu J, Zhang P, Meng Y, Liu C, Ma Y, Xie Q, Meng W (2015b) An amperometric biosensor and a biofuel cell of uric acid based on a chitosan/uricase-poly(furan-3-boronic acid)-Pd nanoparticles/plated Pd/multiwalled carbon nanotubes/Au electrode. J Electroanal Chem 739:187–196. https://doi.org/10.1016/j.jelechem.2014.12.032
  • Taogesi, Wu H, Murata M, Ren H, Endo H (2015) Carbon nanotube-enhanced enzyme sensor for real-time monitoring of cholesterol levels in free-swimming fish. Sensors Mater 27:805–815. https://doi.org/10.18494/SAM.2015.1117
  • Teymourian H, Barfidokht A, Wang J (2020) Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev 49:7671–7709. https://doi.org/10.1039/d0cs00304b
  • Thanh CT, Binh NH, Duoc PND, Thu VT, Van Trinh P, Anh NN, Van Tu N, Tuyen NV, Van Quynh N, Tu VC, Thao BTP, Thang PD, Abe H, Van Chuc N (2021) Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection. Bull Environ Contam Toxicol 106:1017–1023. https://doi.org/10.1007/s00128-021-03179-7
  • Tian J, Wang J, Li Y, Huang M, Lu J (2017) Electrochemically driven omeprazole metabolism via cytochrome P450 assembled on the nanocomposites of ceria nanoparticles and graphene. J Electrochem Soc 164:H470–H476. https://doi.org/10.1149/2.0751707jes
  • Tığ GA, Zeybek DK, Pekyardımcı Ş (2016) Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode. Chem Pap 70:695–705. https://doi.org/10.1515/CHEMPAP-2016-0005
  • Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano. https://doi.org/10.1021/acsnano.5b05690
  • Uc-Cayetano EG, Villanueva-Mena IE, Estrella-Gutiérrez MA, Ordóñez LC, Aké-Uh OE, Sánchez-González MN (2020) Study of amperometric response of guaiacol biosensor using multiwalled carbon nanotubes with laccase immobilized. ECS J Solid State Sci Technol 9:115009. https://doi.org/10.1149/2162-8777/aba8da
  • Uzak D, Atiroğlu A, Atiroğlu V, Çakıroğlu B, Özacar M (2020) Reduced graphene oxide/Pt nanoparticles/Zn-MOF-74 nanomaterial for a glucose biosensor construction. Electroanalysis 32:510–519. https://doi.org/10.1002/ELAN.201900599
  • Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol 130:333–341. https://doi.org/10.1016/j.ijbiomac.2019.02.121
  • Vicentini FC, Garcia LLC, Figueiredo-Filho LCS, Janegitz BC, Fatibello-Filho O (2016) A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzym Microb Technol 84:17–23. https://doi.org/10.1016/j.enzmictec.2015.12.004
  • Voitechovič E, Vektarienė A, Vektaris G, Jančienė R, Razumienė J, Gurevičienė V (2020) 1,4-benzoquinone derivatives for enhanced bioelectrocatalysis by fructose dehydrogenase from gluconobacter japonicus: towards promising D-fructose biosensor development. Electroanalysis 32:1005–1016. https://doi.org/10.1002/ELAN.201900612
  • Vukojević V, Djurdjić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM (2018) RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. Biosens Bioelectron 117:392–397. https://doi.org/10.1016/J.BIOS.2018.06.038
  • Wang B, Li Y, Hu H, Shu W, Yang L, Zhang J (2020c) Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides. PLoS One 15. https://doi.org/10.1371/journal.pone.0231981
  • Wang J, Pamidi PVA, Park DS (1996) Screen-printable sol−gel enzyme-containing carbon inks. Anal Chem 68:2705–2708. https://doi.org/10.1021/ac960159n
  • Wang K, Li Z, Wang C, Zhang S, Cui W, Xu Y, Zhao J, Xue H, Li J (2019) Assembled cationic dipeptide-gold nanoparticle hybrid microspheres for electrochemical biosensors with enhanced sensitivity. J Colloid Interface Sci 557:628–634. https://doi.org/10.1016/J.JCIS.2019.09.033
  • Wang W, Wang X, Cheng N, Luo Y, Lin Y, Xu W, Du D (2020a) Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Anal Chem 132:116041. https://doi.org/10.1016/j.trac.2020.116041
  • Wang Y, Yin L, Li X, Shang R, Yang X, Zhou X, Chen Y (2020b) Highly sensitive NADH detection by utilising an aluminium hydroxide/iron hydroxide/MWCNTs nanocomposite film-modified electrode. Micro Nano Lett 15:1012–1016. https://doi.org/10.1049/MNL.2020.0073
  • Wee Y, Park S, Kwon YH, Ju Y, Yeon KM, Kim J (2019) Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens Bioelectron 132:279–285. https://doi.org/10.1016/J.BIOS.2019.03.008
  • Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113:13482–13487. https://doi.org/10.1021/JP902830Z
  • Xiong S, Deng Y, Zhou Y, Gong D, Xu Y, Yang L, Chen H, Chen L, Song T, Luo A, Deng X, Zhang C, Jiang Z (2018) Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. Anal Methods 10:5468–5479. https://doi.org/10.1039/c8ay01851k
  • Xu L, Zhang M, Hou Y, Huang W, Yao C, Wu Q (2015) An Au nanocomposite based biosensor for determination of cholesterol. Anal Methods 7:3480–3485. https://doi.org/10.1039/c5ay00376h
  • Xu X, Zheng Q, Bai G, Dai Q, Cao X, Yao Y, Liu S, Yao C (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones. Biosens Bioelectron 119:182–190. https://doi.org/10.1016/j.bios.2018.08.009
  • Xu ZH, Cheng XD, Tan JH, Gan X (2016) Fabrication of multiwalled carbon nanotube–polyaniline/platinum nanocomposite films toward improved performance for a cholesterol amperometric biosensor. Biotechnol Appl Biochem 63:757–764. https://doi.org/10.1002/bab.1447
  • Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta. https://doi.org/10.1016/j.aca.2015.05.049
  • Yang C, Yu S, Yang Q, Wang Q, Xie S, Yang H (2018) Graphene supported platinum nanoparticles modified electrode and its enzymatic biosensing for lactic acid. J Electrochem Soc 165:B665. https://doi.org/10.1149/2.0341814JES
  • Yang J, Li D, Pang Z, Wei Q (2016) Laccase biosensor based on Ag-doped TiO2 nanoparticles on CuCNFs for the determination of hydroquinone. Nano 11. https://doi.org/10.1142/S1793292016501320
  • Yao P, Yu S, Shen H, Yang J, Min L, Yang Z, Zhu X (2019) A TiO2-SnS2 nanocomposite as a novel matrix for the development of an enzymatic electrochemical glucose biosensor. New J Chem 43:16748–16752. https://doi.org/10.1039/c9nj04629a
  • Yu HW, Zhang Z, Shen T, Jiang JH, Chang D, Pan HZ (2018) Sensitive determination of uric acid by using graphene quantum dots as a new substrate for immobilisation of uric oxidase. IET Nanobiotechnol 12:191–195. https://doi.org/10.1049/iet-nbt.2016.0221
  • Zappi D, Gabriele S, Gontrani L, Dini D, Sadun C, Marini F, Antonelli ML (2019) Biologically friendly room temperature ionic liquids and nanomaterials for the development of innovative enzymatic biosensors: part II. Talanta 194:26–31. https://doi.org/10.1016/J.TALANTA.2018.10.001
  • Zhao C, Jiao J, Zhou W, Zhang Y, Liu H, Yang X, Pandi B, Cai Y (2020) A novel design and fabrication of ascorbic acid sensitive biosensor based on combination of HAP/rGO/AuNPs composite and ascorbate oxidase. J Clust Sci 31:337–346. https://doi.org/10.1007/s10876-019-01647-z
  • Zhao Y, Wei X, Peng N, Wang J, Jiang Z (2017) Study of ZnS nanostructures based electrochemical and photoelectrochemical biosensors for uric acid detection†. Sensors (Switzerland) 17:1235. https://doi.org/10.3390/s17061235
  • Zheng L, Ma H, Ma Y, Meng Q, Yang J, Wang B, Yang Y, Gong W, Gao G (2019) Development and evaluation of a portable electrochemical biosensor for detecting uric acid in urine. Int J Electrochem Sci 14:9573–9583. https://doi.org/10.20964/2019.10.16
  • Zhou L, Zhou X, Zhao C, Liu Y, Li Y, Ma L, He Y, Jiang Y, Gao J (2021) N-doped porous molybdenum carbide nanoflowers: a novel sensing platform for organophosphorus pesticides detecting. Microchem J 165:106169. https://doi.org/10.1016/j.microc.2021.106169
  • Zhu J, Ye Z, Fan X, Wang H, Wang Z, Chen B (2019) A highly sensitive biosensor based on Au Nps/rGO-PAMAM-Fc nanomaterials for detection of cholesterol. Int J Nanomedicine 14:835–849. https://doi.org/10.2147/IJN.S184013
  • Zrinski I, Pungjunun K, Martinez S, Zavašnik J, Stanković D, Kalcher K, Mehmeti E (2020) Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. Microchem J 152:104282. https://doi.org/10.1016/j.microc.2019.104282