Regeneración ósea mediante injertos personalizadosUna revisión bibliográfica de los métodos y materiales

  1. Alicia Becerro 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Labor dental clínica: Avances clínicos en odontoestomatología

ISSN: 1888-4040

Año de publicación: 2020

Volumen: 21

Número: 3

Páginas: 20-49

Tipo: Artículo

Otras publicaciones en: Labor dental clínica: Avances clínicos en odontoestomatología

Resumen

Introducción La escasez ósea es el principal reto al que los cirujanos implantológicos se enfrentan a diario. Los injertos óseos autólogos se consideran el estándar de oro, sin embargo, tienen inconvenientes como las cirugías adicionales que han popularizado el uso de biomateriales. Además, los déficit óseos parciales o totales en el área maxilar son un desafío clínico particular y dado que tienen una forma difícil de ser replicada intraoperatoriamente en el sitio donante de hueso autólogo. Con ánimo de dar solución a este desafío se han desarrollado técnicas de fabricación tridimensional de scaffolds. Objetivos Realizar una revisión bibliográfica de los métodos que existen para fabricar scaffolds óseos personalizados con tecnología 3D e identificar cual es la situación actual de los mismos en base a la bibliografía publicada. Material y métodos Se realizó una búsqueda bibliográfica en PubMed utilizando como descriptores 3D scaffold, bone regeneration, robocasting, 3D printing con la que se obtuvieron 62 artículos. Después se realizaron búsquedas relativas a cada una de las 12 técnicas que se consideraron más relevantes. Resultados Existen multitud de materiales para la fabricación de andamios que se dividen en materiales poliméricos, biocerámicas y biocomposites que se forman combinando biocerámicas y polímeros para mejorar así sus propiedades. Las técnicas de fabricación de scaffolds se pueden clasificar según el método de fabricación en tres bloques: sustracción, adición y técnicas combinadas; y según el momento en el que se desarrollan en técnicas convencionales y Solid Freeform Fabrication Techniques (SFF) o técnicas de fabricación aditiva. Las técnicas convencionales tienen el inconveniente de no poder controlar la arquitectura del poro, dificultando la creación de estructuras con una correcta porosidad e interconexión. Para solucionar este problema surgieron las técnicas de fabricación aditiva (SFF) que permiten individualizar y generar geometrías complejas. Conclusiones En la actualidad las técnicas más prometedoras en regeneración ósea son la escritura directa mediante tintas, destacando la tecnología de “robocasting”, y las técnicas de 3D printing.

Referencias bibliográficas

  • Abarrategi A, Moreno-Vicente C, Martínez-Vázquez FJ, Civantos A, Ramos V, Sanz-Casado JV, Martínez-Corriá R, Perera FH, Mulero F, Miranda P, López-Lacomba JL. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. Plos One. 2012;7(3):e34117.
  • Aita IE, Breitkreutz J, Quodbach J. Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications. Eur J Pharm Sci. 2020;146:105266.
  • Andrades JA, Narváez-Ledesma L, Cerón-Torres L, Cruz-Amaya AP, López-Guillén D, Mesa-Almagro ML and Moreno-Moreno JA. Bone Engineering: A Matter of Cells, Growth Factors and Biomaterials. En: Andrades JA. Regenerative Medicine and Tissue Engineering. IntechOpen;2013. 615-41.
  • Antonov EN, Bagratashvili VN, Whitaker MJ, Barry JJA, Shakesheff KM, Konovalov AN, et al. Three- dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater. 2005;17(3):327–330
  • Araújo MG, da Silva JC, de Mendonça AF, Lindhe J. Ridge alterations following grafting of fresh extraction sockets in man. A randomized clinical trial. Clin Oral Implants Res. 2015;26(4):407-12.
  • Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials-Process Perspective. Pharmaceutics. 2020;12(2).
  • Bartolo PJ, Almeida HA, Rezende RA, Laoui T, Bidanda B. Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bartolo PJ. Virtual prototyping of biomanufacturing in medical application. New York: Springer; 2008. p.149–170
  • Bernardo JR. Indirect tissue scaffold fabrication via additive manufacturing and biomimetic mineralization. Master of Science, Mechanical Engineering, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 2010.
  • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.Biomaterials. 2012;33(26):6020-41.
  • Bose S, Suguira S, Bandyopadhyay A. Processing of controlled porosity ceramic structures via fused deposition. Scripta Mater. 1999;41:1009–1014
  • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today. 2013;16 (12):496-504
  • Brie J, Chartier T, Chaput C, Delage C, Pradeau B, Caire F, Boncoeur MP, Moreau JJ. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. J Craniomaxillofac Surg. 2013;41(5):403-7.
  • Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic press. 2013.
  • Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B, Bressan E. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016;34(5):740-753.
  • Burchardt H. The biology of bone graft repair. Clin Orthop 1983; 108 (174):28-42.
  • Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010;46(2):386-95.
  • Cesarano J, Segalman R, Calvert P. Robocasting provides moldless fabrication from slurry deposition Ceram Ind. 1998;148:94–102
  • Chao Le Meng Bao, Erin Y. Teo, Mark S.K. Chong, Yuchun Liu, Mahesh Choolani and Jerry K.Y. Chan. Advances in Bone Tissue Engineering. En: Jose A. Andrades. Regenerative Medicine and Tissue Engineering. IntechOpen.2013; 599-614.
  • Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater. 2012;1(1):2
  • Chen QZ Foaming technology of tissue engineering scaffolds- a review. Bubble Sci Eng Technol. 2011;3:34–47.
  • Chen QZ, Li Y, Jin LY, Quinn JMW, Komesaroff PA. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–4153
  • Chen QZ, Thouas GA. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Acta Biomater. 2011;7(10):3616-3626.
  • Chen QZ, Zhu CH, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progr Biomater. 2012;1:1–22
  • Chu TM, Halloran JW, Wagner WC. Hydroxyapatite suspension for implant fabrication by stereolithography. In: Ghosh A, Barks RE, Hiremath B. Case studies in ceramic product development. Westerville: American Ceramic Society;1997. p.119–125
  • Chu TM, Halloran JW, Wagner WC. Ultraviolet curing of highly loaded hydroxyapatite suspension. In: Rusin RP, Fischman GS. Bioceramics: materials and applications II. Westerville: American Ceramic Society; 201. p.57–66
  • Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002;23(5):1283-1293
  • Chu TMG. Solid freeform fabrication of tissue engineering scaffolds. In: Ma PX, Elisseeff J. Scaffolding in tissue engineering. Florida: CRC Press; 2006. p.139–153
  • Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47:237-47.
  • Cruz F, Simoes J, Coole T. Direct manufacture of hydroxyapatite based bone implants by selective laser sintering. In: 2nd international conference on advanced research in virtual rapid protrotyping, Portugal: Leiria; 2005. p. 119
  • Danforth S, Safari A, JMA, Langrana N. Solid free form fabrication (SFF) of functional advanced ceramic components. Naval research review, office of naval research. 1998; 50(1):27–38
  • El Aita I, Breitkreutz J, Quodbach J. On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm. 2019;134:29-36.
  • Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppala JV. Preparation of poly(e-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7:3850–3856 El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater.2017;62:1-28.
  • Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JMF. Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. Journal of the European Ceramic Society. 2014;34(1);107–118.
  • Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimen- sional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467-76
  • Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R et al. Lithography-based additive manufacturing of cullular ceramic structures. Adv Eng Mater. 2012;14:1052–1058
  • Feng P, Gao C, Shuai C, Peng S. Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania. RSC Adv. 2015;5:3498–3507
  • Fernández-Tresguerres-Hernández-Gil I, Alobera-Gracia MA, del-Canto-Pingarrón M, Blanco-Jerez L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal. 2006;11(1):E47-51.
  • Franco J, Hunger P, Launey ME, Tomsia AP, Saiz.E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 2010;6(1):218-28.
  • Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 2011;7(10):3547-54.
  • Gendviliene I, Simoliunas E, Rekstyte S, Malinauskas M, Zaleckas L, Jegelevicius D, Bukelskiene V, Rutkunas V. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. J Mech Behav Biomed Mater. 2020;104:103616.
  • Guda T, Oh S, Appleford MR, Ong JL. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering. Int J Oral Maxillofac Implants. 2012;27(2):288-94.
  • Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future?. Materials Today. 2016;19(2):69-87.
  • Harris LD, Kim B-S, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42:396–402
  • Hattiangadi A, Bandyopadhyay A. Modeling of multiple pore ceramic materials fabricated via fused deposition process. Scripta Mater. 2000;42:581–588
  • Heller C, Schwentenwein M, Russmueller G, Varga F, Stampfl J, Liska R. Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polym Sci Part A Polym Chem. 2009;47:6941–6954
  • Hing KA, Annaz B, Saeed S, Revell PA, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med. 2005;16(5):467-75.
  • Hollister SJ. Porous scaffold design for tissue engineering [published correction appears in Nat Mater. 2006 Jul;5(7):590]. Nat Mater. 2005;4(7):518-524
  • Hong SJ, Jeong I, Noh KT, Yu HS, Lee GS, Kim HW. Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells. J Mater Sci Mater Med. 2009;20(9):1955-62.
  • Hopkinson N, Dickens P. Emerging rapid manufacturing processes. In: Hopkinson N, Hague RJM, Dickens PM. Rapid manufacturing: an industrial revolution for the digital age. West Sussex: Wiley;2006. p.55–80
  • Hutmacher DW, Hoque ME, Wong YS. Design, fabrication and physical characterization of scaffolds made from biodegradable synthetic polymers in combination with RP systems based on melt extrusion. In: Bidanda B, Bártolo PJ. Virtual prototyping & bio manufacturing in medical applications. New York: Springer;2008. p.261–291
  • Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245-60.
  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026-34.
  • Iyer S, McIntosh J, Bandyopadhyay A, Langrana N, Safari A, Danforth SC, et al. Microstructural characterization and mechanical properties of Si3N4 fomed by fused deposition of ceramics. Int J Appl Ceram Technol. 2008;5:127-137
  • Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C. 2003;23:611–620
  • Kanczler JM, Mirmalek-Sani S-H, Hanley NA, Ivanov AL, Barry JJA, Upton C, et al. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater. 2009;5:2063–2071
  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-9.
  • Kim BS, Yang SS, Kim CS. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an E-polycaprolactone polymer emulsion coating method for bone tissue engineering. Colloids Surf B Biointerfaces. 2018;170:421-429.
  • Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18.
  • Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD,Smeets R. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-18.
  • Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. J Adv Pharm Technol Res.
  • Kruth JP, Wang X, Laoui T, Froyen L. Lasers and materials in selective laser sintering. Assembly Autom. 2003;23:357–371
  • Kundu J, Shim JH, Jang J, SW, Cho DW. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med. 2015;9(11):1286-97.
  • Lee JH1, Baik JM2, Yu YS3, Kim JH3, Ahn CB1, Son KH4, Kim JH5, Choi ES6, Lee JW7,8. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep. 2020 May 5;10(1):7554.
  • Lee JW, Lan PX, Kim B, Lim G, Dong-Woo C. Fabrication and characteristic analysis of a poly(propylene fumate) scaffold using micro-stereolithography technology. J Biomed Mater Res B Appl Biomater. 2008;87B:1–9
  • Lee JY, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication. 2013;5:045003.
  • Lee M, Dunn JC, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials. 2005;26:4281–4289.
  • Lee. YK, Choi. SH. Novel Calcium Phosphate Glass for Hard-Tissue Regeneration. J Korean Acad Periodontol. 2008;38:273-298
  • Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24:2363–2378
  • Lethaus B, Poort L, Böckmann R, Smeets R, Tolba R, Kessler P. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J Craniomaxillofac Surg. 2012;40(1):43-6.
  • Li Y, Cook WD, Moorhoff C, Huang WC, Chen QZ. Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym Int. 2013;62:534–547
  • Lin YH, Chiu YC, Shen YF, Wu YA, Shie MY. Bioactive calcium silicate/poly-E-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J Mater Sci Mater Med. 2017 Dec 27;29(1):11
  • Liu X, Rahaman MN, Liu Y, Bal BS, Bonewald LF. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds. Acta Biomater. 2013;9(7):7506-17.
  • Lorrison JC, Dalgarno KW, Wood DJ. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering. J Mater Sci Mater Med. 2005;16(8):775-781.
  • Lundgren S, Sjöström M, Nyström E, Sennerby L. Strategies in reconstruction of the atrophic maxilla with autogenous bone grafts and endosseous implants. Periodontol 2000. 2008;47:143-61
  • Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials (Basel). 2019 Aug 6;12(15):2491.
  • Malmström J, Adolfsson E, Arvidsson A, Thomsen P. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity. Clin Implant Dent Relat Res. 2007;9(2):79-88.
  • Mangano F, Bazzoli M, Tettamanti L, Farronato D, Maineri M, Macchi A, Mangano C. Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible. Lasers Med Sci. 2013;28(5):1241-7.
  • Martínez-Vázquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361–4368
  • Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130.
  • Metz C, Duda GN, Checa S.Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration Acta
  • Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3:1–6
  • Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2006;2(4):457-66.
  • Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent 1993; 2:158-167.
  • Molladavoodi S, Gorbet M, Medley J, Kwon HJ. Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols. J Mech Behav Biomed Mater. 2013;17:186-197.
  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17(14):1417-1422
  • Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced pase separation method. Biomaterials. 1999;20(19):1783-1790.
  • (NEW6) Lee SJ, Won JE, Han C, Yin XY, Kim HK, Nah H, Kwon IK, Min BH, Kim CH, Shin 2013;4(2):78-83.
  • Nyström E, Nilson H, Gunne J, Lundgren S A 9-14 year follow-up of onlay bone grafting in the atrophic maxilla. Int J Oral Maxillofac Surg. 2009;38(2):111-6.
  • Onagoruwa S, Bose S, Bandyopadhyay A. Fused deposition of ceramics (FDC) and composites. In:Solid freeform fabrication symposium. The University of Texas at Austin; 2001. p.224–231
  • Padilla S, Sánchez-Salcedo S, Vallet-Regí M. Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res. 2006;81A:224–232
  • Pae HC, Kang JH, Cha JK, Lee JS, Paik JW, Jung UW, Kim BH, Choi SH. 3D-printed polycaprolactone scaffold mixed with ß-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects. J Biomed Mater Res B Appl Biomater. 2019;107(4):1254-1263.
  • Pereira TF, Oliveira MF, Maia IA, Silva JVL, Costa MF, Thiré RMSM. 3D printing of poly(3-hydroxybutyrate) porous structures using selective laser sintering. Macromolecular Symposia. 2012;319:64–73
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–1211
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014 Jan;14(1):15-56.
  • Popov VK, Antonov EN, Bagratashvili VN, Konovalov AN, Howdle SM. Selective laser sintering of 3-D biodegradable scaffolds for tissue engineering. In: Materials research society symposium proceeding; 2004. p.F.5.4.1–F.5.4.3
  • Raucci MG, Guarino V, Ambrosio L. Hybrid composite scaffolds prepared by sol–gel method for bone regeneration. Compos Sci Technol. 2010;70:1861–1868
  • Reddi AH, Wientroub S. Biologic principles of bone induction. Orthop Clin North Am 1987;18: 207-212.
  • Reed JS. Principles of ceramic synthesis. Chichester: Wiley; 1988.
  • Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:525-535.
  • Roohani-Esfahani SI, Newman P, Zreiqat H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep. 2016;6:19468.
  • Sakamoto M, Matsumoto T. Development and Evaluation of Superporous Ceramics Bone Tissue Scaffold Materials with Triple Pore Structure A) Hydroxyapatite, B) Beta-Tricalcium Phosphate. En: Andrades JA. Regenerative Medicine and Tissue Engineering. IntechOpen;2013:301-20
  • Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg. 2013 Oct;41(7):603-9.
  • Schlickewei W, Schlickewei C. The use of bone substitutes in the treatment of bone defects. The clinical view and history. Macromol Symp 2007;253:10-23.
  • Seol YJ, Park DY, Park JY, Kim SW, Park SJ, Cho DW. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng. 2013;110:1444–1455
  • Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair. J Biomed Mater Res. 2002;59:340–348
  • Shao H, Ke X, Liu A, Sun M, He Y, Yang X, Fu J, Liu Y, Zhang L, Yang G, Xu S, Gou Z. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface p-ore architecture in thin-wall bone defect. Biofabrication. 2017;9(2):025003.
  • Shao H, Sun M, Zhang F, et al. Custom Repair of Mandibular Bone Defects with 3D Printed BioceramicScaffolds. J Dent Res. 2018;97(1):68-76.
  • Shao H, Sun M, Zhang F, Liu A, He Y, Fu J, Yang X, Wang H, Gou Z. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds. J Dent Res. 2018;97(1):68-76.
  • Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, et al. A three- dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739–4751
  • Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Bárbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg. 2008;36(8):443-9.
  • Smay JE, Cesarano J III, Lewis JA. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir. 2002;18:5429–5437
  • Smay JE, Lewis JA. Solid free-form fabrication of 3-D ceramic structures. In: Bansal NP, Boccaccini AR. Ceramics and composites processing methods. 1. New Jersey: Wiley;2012. p.459–484
  • Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R. Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. J Craniomaxillofac Surg. 2012;40(3):e65-70.
  • Tagliaferri V, Trovalusci F, Guarino S, Venettacci S. Environmental and Economic Analysis of FDM, SLS and MJF Additive Manufacturing Technologies. Materials (Basel). 2019;12(24):4161.
  • Tamimi F, Torres J, Al-Abedalla K, Lopez-Cabarcos E, Alkhraisat MH, Bassett DC, et al. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials. 2014;35(21) 5436–5445.
  • Tamjid E, Simchi A, Dunlop JW, Fratzl P, Bagheri R, Vossoughi M. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces. J. Biomed. Mater. Res. A. 2013;101:2796–2807.
  • Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci. 2013; 1(12): 1250–1259.
  • Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61-102.
  • Tirella A, Vozzi F, Vozzi G, Ahluwalia A. PAM2 (Piston Assisted Microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds. Tissue Eng Part C. 2011;17:229–237
  • Torres J, Tamimi F, Alkhraisat MH, Prados-Frutos JC, Rastikerdar E, Gbureck U, Barralet JE, López-Cabarcos E. Vertical bone augmentation with 3D- synthetic monetite blocks in the rabbit calvaria. J. Clin. Periodontol. 2011;38(12):1147–1153.
  • Tovar N, Witek L, Atria P, Sobieraj M, Bowers M, Lopez CD, Cronstein BN, Coelho PG. Form and functional repair of long bone using 3D-printed bioactive scaffolds. J Tissue Eng Regen Med. 2018;12(9):1986-1999.
  • Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2017 Dec 1;3(3):278-314.
  • Vozzi G, Ahluwalia A. Microfabrication for tissue engineering: rethinking the cells-on-a scaffold approach. J Mater Chem. 2007;17:1248–1254
  • Vozzi G, Flaim C, Ahluwalia A, Bthatia S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials. 2003;24:2533–2540
  • Vozzi G, Previti A, Rossi DD, Ahluwalia A. Microsyringe- based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8:1089–1098
  • Vozzi G, Tirella A, Ahluwalia A. Rapid prototyping composite and complex scaffolds with PAM2. Methods Mol Biol. 2012;868:57–69
  • Wang F, Shor L, Darling A, Khalil S, Sun W, Güçeri S, Lau A. Precision extruding deposition and characterization of cellular poly-e-caprolactone tissue scaffolds. Rapid Prototyp J. 2004;10:42–49
  • Warnke PH, Seitz H, Warnke F, Becker ST, Sivananthan S, Sherry E, et al. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomater. 2010;93B(1): 212–217
  • Wen H, He B, Wang H, Chen F, Li P, Cui M, et al. Structure-Based Gastro-Retentive and Controlled-Release Drug Delivery with Novel 3D Printing. AAPS PharmSciTech. 2019;20(2):68.
  • Xie J, Shao H, He D, Yang X, Yao C, Ye J, et al. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Commun.2015;5(4):631–639
  • Xiong Z, Yan Y, Wang S, Zhang R, Zhang C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater. 2002;46:771–776
  • Xu H, Han D, Dong JS, Shen GX, Chai G, Yu ZY, Lang WJ, Ai ST. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot. 2010;6(1):66-72.
  • Yang L, Liu S, Fang W, Chen J, Chen Y. Poly(lactic-co-glycolic acid)-bioactive glass composites as nanoporous scaffolds for bone tissue engineering: In vitro and in vivo studies. Exp Ther Med. 2019;18(6):4874-4880.
  • YS, Park SA. Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. J Colloid Interface Sci. 2019 Mar 15;539:468-480.
  • Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–1185
  • Zheng P, Hu X, Lou Y, Tang K. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes. Med Sci Monit.2019;25:7361-7369.
  • Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C Mater Biol Appl. 2014;38:1-10.