Potencial de las infusiones de ortiga (Urtica dioica L.) para proteger a la alubia común (Phaseolus vulgaris L.) de la enfermedad de la grasa

  1. Cerezo Antón, Carlota 1
  2. García Angulo, Penélope 2
  3. Centeno Martín, María Luz 2
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

  2. 2 Universidad de León. Departamento de Ingeniería y Ciencias Agrarias
Revista:
AmbioCiencias: revista de divulgación

ISSN: 1988-3021

Any de publicació: 2023

Número: 21

Pàgines: 69-81

Tipus: Article

DOI: 10.18002/AMBIOC.I21.8184 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: AmbioCiencias: revista de divulgación

Objectius de Desenvolupament Sostenible

Resum

El empleo de preparados basados en plantas que sustituyan a los fitosanitarios químicos es un reto para la agricultura sostenible. Las suspensiones acuosas (Us) de ortiga (Urtica dioica L.) son un candidato pues el tratamiento con Us de plantas de alubia común (Phaseolus vulgaris L.) redujo los síntomas de la enfermedad de la grasa causada por Pseudomonas syringae pv. phaseolicola (Pph) (De la Rubia et al., 2022). Sin embargo, el uso de Us como producto agrícola final entraña ciertos problemas. El objetivo del presente trabajo fue comprobar si las infusiones de ortiga (Uin) tienen el mismo efecto y, en caso afirmativo, conocer a qué tipo de actividad podría deberse: antimicrobiana, promotora de las defensas naturales de la planta y/o antioxidante. Para ello, se hicieron ensayos de crecimiento de Pph en presencia de Uin, de liberación de H2O2 en respuesta a flagelina en discos foliares preincubados con Uin y de estimación de la capacidad antioxidante de Uin. Los resultados apuntan a que las propiedades protectoras de la infusión se deben al contenido en compuestos bioactivos antioxidantes. Además, se probó que el pretratamiento de las plantas con Uin disminuía el daño oxidativo foliar provocado tras 6 horas de infección con Pph, lo que refuerza esta idea.

Referències bibliogràfiques

  • Benzie, I.F.F. y Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1):70–76.
  • Cabrera-Soto, M.L., Salinas-Moreno, Y., Velázquez-Cardelas, G.A. y Espinosa Trujillo, E. 2009. Contenido de fenoles solubles e insolubles en las estructuras del grano de maíz y su relación con propiedades físicas. Agrociencia, 43(8): 827–839.
  • Couto, D. y Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Natural Reviews Immunology. 16, 537–552.
  • De la Rubia, A.G., De Castro, M., Medina-Lozano, I. y García-Angulo, P. 2022. Using plant-based preparations to protect common bean against halo blight disease: The potential of nettle to trigger the immune system. Agronomy, 12(1): 63.
  • De la Rubia, A.G., Largo-Gosens, A., Yusta, R., Sepúlveda-Orellana, P., et al. 2023. A novel pectin methylesterase inhibitor, PMEI3, in common bean suggests a key role of pectin methylesterification in Pseudomonas resistance. Journal of Experimental Botany, erad 362. https://doi.org/10.1093/jxb/erad362
  • De la Rubia, A.G., Mélida, H., Centeno, M.L., Encina, A. y García-Angulo, P. 2021. Inmune priming triggers cell wall remodeling and increased resistance to halo blight disease in common bean. Plants, 10(8): 1514.
  • Grauso, L., Falco, B. y Motti, R. 2020. Stinging nettle, Urtica dioica L.: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 19: 1341-1377.
  • Hidalgo, M., Sánchez-Moreno, C. y de Pascual-Teresa, S. 2010. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3):691–696.
  • Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., et al. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science, 8: 475.
  • Lou, S.N., Lin, Y.S., Hsu, Y.S., Chiu, E.M. y Ho, C.T. 2014. Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chemistry, 161: 246–253.
  • Maričić, B., Brkljača, M., Ban, D., Palčić, I., Franin, K., Marcelić, S. y Goreta Ban, S. 2022. Non-aerated common nettle (Urtica dioica L.) extract enhances green beans (Phaseolus vulgaris L.) growth and soil enzyme activity. Life, 12(12), 2145.
  • Maričić, B., Radman, S., Romić, M., Perković, J., et al. 2021. Stinging nettle (Urtica dioica L.) as an aqueous plant-based extract fertilizer in green bean (Phaseolus vulgaris L.) sustainable agriculture. Sustainability, 13(7): 4042.
  • Ministerio de Derechos Sociales y Agenda 2030. 2018. Plan de Acción para la Implementación de la Agenda 2030. Disponible en: https://www.mdsocialesa2030.gob.es/agenda2030/documentos/plan-accion-implementacion-a2030.pdf (Accedido: 20 de junio de 2023).
  • Petrov, V., Hille, J., Mueller-Roeber, B. y Gechev, T.S. 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6:69.
  • Shonte, T.T., Duodu K.G. y de Kock, H.L. 2020. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon, 6(5): e03938.
  • Taiz, L., Zeiger, E., Moller, I.M. y Murphy, A. 2015. Plant Physiology. 6ª ed. Sunderland: Sinauer.
  • Tarkowski Ł.P., Van de Poel B., Höfte M. y Van den Ende, W. 2019. Sweet immunity: inulin boosts resistance of lettuce (Lactuca sativa) against grey mold (Botrytis cinerea) in an ethylene-dependent manner. International Journal of Molecular Sciences, 20(5): 1052.
  • Van Lenteren, J.C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1–20.
  • Verma, S., Nizam, S. y Verma, P.K. 2013. Biotic and Abiotic Stress Signaling in Plants en Sarwat, M., Ahmad, A. y Abdin, M. (eds.). En Stress Signaling in Plants: Genomics and Proteomics Perspective, 1.ª ed. New York: Springer, pp. 25–49.
  • Zaynab, M., Fatima, M., Abbas, S., Sharif, Y. et al. 2018. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124: 198–202.
  • Zhang, X., Wang, X., Wang, M., Cao, J. et al. 2019. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave. PLoS One, 14(1): e0200174.
  • Zipfel, C. y Oldroyd, G. 2017. Plant signalling in symbiosis and immunity. Nature, 543:328–336.