La base genética de los trastornos depresivos

  1. Gutiérrez, Judith 1
  2. García García, Pedro 2
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

  2. 2 Universidad de León. Departamento de Biología Molecular
Revue:
AmbioCiencias: revista de divulgación

ISSN: 1988-3021

Année de publication: 2023

Número: 21

Pages: 27-38

Type: Article

DOI: 10.18002/AMBIOC.I21.8180 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: AmbioCiencias: revista de divulgación

Objectifs de Développement Durable

Résumé

La depresión es un trastorno mental grave que afecta a unos 300 millones de personas en todo el mundo. Se considera una de las principales causas de discapacidad y tiene una alta tasa de morbilidad y mortalidad. En el presente trabajo fin de grado se ha realizado una revisión bibliográfica de la literatura enfocada en los aspectos genéticos relativos a esta enfermedad. La fisiopatología de la depresión aún no se conoce con exactitud, aunque se han relacionado diferentes genes como SLC6A4, BDNF, MAOA o FKBP5. En las últimas décadas se ha avanzado considerablemente en el estudio de la genética de la depresión gracias a los análisis de asociación del genoma completo (Genome-Wide Association Study, GWAS). Estos trabajos han permitido identificar más de 150 polimorfismos de un único nucleótido (SNP) asociados a la depresión. Debido a la gran heterogeneidad de resultados se puede concluir que esta enfermedad tiene un carácter multigénico y que está influenciada tanto genética como ambientalmente.

Références bibliographiques

  • Alshaya, D.S. 2022. Genetic and epigenetic factors associated with depression: An updated overview. Saudi Journal of Biological Sciences, 29(8): 103311.
  • American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders: DSM-5. 5.a ed. Washington, D.C.: American Psychiatric Association.
  • Beurel, E., Toups, M. y Nemeroff, C.B. 2020 The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 107(2): 234–256.
  • Bhatt, S., Nagappa, A.N. y Patil, C.R. 2020. Role of oxidative stress in depression. Drug Discovery Today, 25(7): 1270–1276.
  • Black, C.N., Bot, M., Scheffer, P.G., Cuijpers, P. y Penninx, B.W.J.H. 2015. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology, 51: 164–175.
  • Correia, A.S. y Vale, N. 2022. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. International Journal of Molecular Sciences, 23(15): 8493.
  • Colucci-D’Amato, L., Speranza, L. y Volpicelli, F. 2020. Neurotrophic Factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. International Journal of Molecular Sciences, 21(20): 7777.
  • Criado-Marrero, M., Smith, T.M., Gould, L.A., Kim, S et al. 2020 FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain, Behavior, and Immunity - Health, 9: 100143.
  • Ding, R., Su, D., Zhao, Q., Wang, Y. et al. 2023. The role of microRNAs in depression. Frontiers in Pharmacology, 14:1129186.
  • Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E. et al. 2003. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2): 257–269.
  • Flint, J. y Kendler, K.S. 2014. The genetics of major depression. Neuron, 81(3): 1214. Fries, G.R., Saldana, V.A., Finnstein, J. y Rein, T. 2023. Molecular pathways of major depressive disorder converge on the synapse. Molecular Psychiatry, 28(1): 284–297.
  • Gonda, X., Petschner, P., Eszlari, N., Baksa, D. et al. 2019. Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacology and herapeutics, 194: 22–43.
  • Howard, D.M., Adams, M.J., Clarke, T.-K., Hafferty, J.D. et al. 2019. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3): 343–352.
  • Iurescia, S., Seripa, D. y Rinaldi, M. 2016. Role of the 5-HTTLPR and SNP promoter polymorphisms on serotonin transporter gene expression: a closer look at genetic architecture and in vitro functional studies of common and uncommon allelic variants. Molecular Neurobiology, 53: 5510–5526.
  • Kamran, M., Bibi, F., Rehman, A.U. y Morris, D.W. 2022. Major depressive disorder: Existing hypotheses about pathophysiological mechanisms and new genetic findings. Genes, 13(4): 646.
  • Kang, C., Shi, J., Gong, Y., Wei, J. et al. 2020. Interaction between FKBP5 polymorphisms and childhood trauma on depressive symptoms in Chinese adolescents: The moderating role of resilience. Journal of Affective Disorders, 266: 143–150.
  • Kendall, K.M., Van Assche, E., Andlauer, T.F., Choi, K.W et al. 2021. The genetic basis of major depression. Psychological Medicine, 51(13): 2217–2230.
  • Lahti, J., Ala-Mikkula, H., Kajantie, E., Haljas, K. et al. 2016. Associations between self-reported and objectively recorded early life stress, FKBP5 polymorphisms, and depressive symptoms in midlife. Biological Psychiatry, 80(11): 869–877.
  • Lee, B., Shin, E., Song, I. y Chang, B. 2022. Depression in adolescence and brain-derived neurotrophic factor. Frontiers in Molecular Neuroscience, 15: 947192.
  • Lee, J., Lee, K.H., Kim, S.H., Han, J.Y. et al. 2020. Early changes of serum BDNF and SSRI response in adolescents with major depressive disorder. Journal of Affective Disorders, 265: 325–332.
  • Liu, N., Wang, Z.Z., Zhao, M., Zhang, Y. y Chen, N.H. 2020. Role of non-coding RNA in the pathogenesis of depression. Gene, 735: 144276.
  • Maddox, S.A., Schafe, G.E. y Ressler, K.J. 2013. Exploring epigenetic regulation of fear memory and biomarkers associated with post-traumatic stress disorder. Frontiers in Psychiatry, 4: 62.
  • Malhi, G.S. y Mann, J.J. 2018. Seminar depression. The Lancet, 392: 2299–2312.
  • Mitchell, A.C., Bharadwaj, R., Whittle, C., Krueger, W. et al. 2014. The genome in three dimensions: A new frontier. Biological Psychiatry, 75(12): 961–969.
  • Penner-Goeke, S. y Binder, E.B. 2019. Epigenetics and depression. Dialogues in clinical Neuroscience, 21(4): 397–405.
  • Pérez-Granado, J., Piñero, J. y Furlong, L.I. 2022. Benchmarking post-GWAS analysis tools in major depression: Challenges and implications. Frontiers in Genetics, 13: 1006903.
  • Petralia, M.C., Mazzon, E., Fagone, P., Basile, M.S. et al. 2020. Pathogenic contribution of the macrophage migration inhibitory factor family to major depressive disorder and emerging tailored therapeutic approaches. Journal of Affective Disorders, 263: 15–24.
  • Petralia, M.C., Mazzon, E., Fagone, P., Basile, M.S. et al. 2020. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmunity Reviews, 19(5): 102504.
  • Qiu, X., Lu, P., Zeng, X., Jin, S. y Chen, X. 2023. Study on the mechanism for SIRT1 during the process of exercise improving depression. Brain Sciences, 13(5): 719.
  • Rafikova, E.I., Ryskov, A.P. y Vasilyev, V. A. 2020. Genetics of depressive disorders: candidate genes and genome-wide association studies. Russian Journal of Genetics, 56(8), 903–915.
  • Shadrina, M., Bondarenko, E.A. y Slominsky, P.A. 2018. Genetics factors in major depression disease. Frontiers in Psychiatry, 9: 334.
  • Sullivan, P.F., Daly, M.J., Ripke, S., Lewis, C.M. et al. 2013. A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18(4): 497–511.
  • Sullivan, P.F., Neale. M.C. y Kendler, K.S. 2000. Genetic epidemiology of major depression: review and meta- analysis. American Journal of Psychiatry, 157: 1552–1562. doi:10.1176/appi.ajp.157.10.1552
  • Ting, E. Y.C., Yang, A.C. y Tsai, S.J. 2020. Role of interleukin-6 in depressive disorder. International Journal of Molecular Sciences, 21(6): 2194.
  • Tozzi, L., Carballedo, A., Wetterling, F., McCarthy, H. et al. 2016. Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression. Neuropsychopharmacology, 41(2): 487–497.
  • Yang, T., Nie, Z., Shu, H., Kuang, Y. et al. 2020. The role of BDNF on neural plasticity in depression. Frontiers in Cellular Neuroscience, 14: 82.
  • Yohn, C.N., Gergues, M.M. y Samuels, B.A. 2017. The role of 5-HT receptors in depression. Molecular Brain, 10(1): 1–12.
  • Yuan, Z., Chen, Z., Xue, M., Zhang, J. y Leng, L. 2020. Application of antidepressants in depression: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 80, 169–181.
  • Zięba, A., Matosiuk, D. y Kaczor, A.A. 2023. The role of genetics in the development and pharmacotherapy of depression and its impact on drug discovery. International Journal of Molecular Sciences, 24(3): 2946.