Nash multiplicities and resolution invariants
- A. Bravo
- S. Encinas
- Beatriz Pascual Escudero
ISSN: 0010-0757
Año de publicación: 2017
Volumen: 68
Fascículo: 2
Páginas: 175-217
Tipo: Artículo
Otras publicaciones en: Collectanea mathematica
Resumen
The Nash multiplicity sequence was defined by Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. Hickel generalized this notion and described a sequence of blow ups which allows us to compute it and study its behavior. In this paper, we show how this sequence can be used to compute some invariants that appear in algorithmic resolution of singularities. Moreover, this indicates that these invariants from constructive resolution are intrinsic to the variety since they can be read in terms of its space of arcs. This result is a first step connecting explicitly arc spaces and algorithmic resolution of singularities.
Información de financiación
Financiadores
-
Ministerio de Economía y Competitividad
- MTM2012-35849
- MTM2012-35849
-
Ministerio de Economía y Competitividad
- MTM2012-35849
-
Secretaría de Estado de Investigación, Desarrollo e Innovación
- BES-2013-062656