Indicators of ADHD symptoms in virtual learning context using machine learning technics

  1. Laura Patricia Mancera Valetts 1
  2. Silvia Margarita Baldiris Navarro 2
  3. Viviana Betancur Chicué 2
  1. 1 Universidad Manuela Beltrán Docente investigadora
  2. 2 Universidad Manuela Beltrán Docente
Zeitschrift:
Revista Escuela de Administración de Negocios

ISSN: 2590-521X 0120-8160

Datum der Publikation: 2015

Nummer: 79

Seiten: 22-37

Art: Artikel

Andere Publikationen in: Revista Escuela de Administración de Negocios

Zusammenfassung

This paper presents a user model for students performing virtual learning processes. This model is used to infer the presence of Attention Deficit Hyperactivity Disorder (ADHD) indicators in a student. The user model is built considering three user characteristics, which can be also used as variables in different contexts. These variables are: behavioral conduct (BC), executive functions performance (EFP), and emotional state (ES). For inferring the ADHD symptomatic profile of a student and hislher emotional alterations, these features are used as input in a set of classification rules. Based on the testing of the proposed model, training examples are obtained. These examples are used to prepare a classification machine learning algorithm for performing, and improving, the task of profiling a student. The proposed user model can provide the first step to adapt learning resources in e-learning platforms to people with attention problems, specifically, young-adult students with ADHD.

Bibliographische Referenzen

  • Alvarez, J.A,Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review. 16. 17-42
  • (2000). American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. Text Revision (DSMIV-TR).
  • Baldiris, S.M,Santos, O.C,Barrera, C,Boticario, J.G,Velez, J,Fabregat, R. (2008). Integration of Educational Specifications and Standards to Support Adaptive Learning Scenarios in ADAPTAPlan. International Journal of Computer & Applications. 5. 88-107
  • Baldiris, S.M,Santos, O.C,Huerva, D,Fabregat, R,Boticario, J.G. (2008). Multidimensional Adaptations for Open Learning Management Systems. 3. WI-IAT '08 Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.
  • Barkley, R.A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 121. 65-94
  • Brown, T.E. (2002). DSM-IV: ADHD and executive function impairments. Advanced Studies in Medicine. 2. 910-914
  • Brusilvsky, P,Millan, E. (2007). User Models for Adaptive Hypemedia and Adaptive Educational Systems. The Adaptive Web. 4321. 3-53
  • Colan, O,Wade, V,Gargan, M,Hockemeyer, C. (2002). An architecture for integrating adaptive hypermedia services with open learning environments. Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications. Denver CO.
  • Daigre, C,Ramos-Quiroga, J.A,Valero, S,Bosch, R,Roncero, C,Gonzalvo, B,Nogueira, M,Casas, M. (2009). Cuestionario autoinformado de cribado de TDAH ASRS-v1.1 en adultos en tratamiento por trastornos por uso de sustancias. Actas Esp Psiquiatr. 37. 299-305
  • Etchepareborda, M.C,Paiva-Barón, H,Abad, L. (2009). The advantages of neuropsychological examination batteries in attention deficit hyperactivity disorder. Rev Neurol. 48. 89-93
  • Faraone, S,Biederman, J,Spencer, T,Wilens, T,Seidman, L,Mick, E. (2000). Attention-Deficit/Hyperactivity Disorder in adults: An Overview. Biological Psychiatry. 48. 9-20
  • Grabinger, S. (2010). A framework for supporting postsecondary learners with Psychiatric Disabilities in Online environments. Electronic Journal of e-learning. 8. 101-110
  • Jurado, F,Santos, O.,,Redondo, M,Boticario, J,Ortega, M. (2008). Providing Dynamic Instructional Adaptation in Programming Learning. 3 International workshop on Hybrid Artificial Intelligence Systems.
  • Kessler, R.C,Adler, L,Barkley, R,Biederman, J,Conners, C.K,Demler, O,Faraone, S.V. (2006). The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. American Journal of Psychiatry. 163. 716
  • Kroes, M,Kalff, A.C,Kessels, A.G.H,Steyaert, J,Feron, F,Van Someren, A.J.W.M. (2001). Child psychiatric diagnoses in a population of Dutch school-children aged 6 to 8 years. Journal of the American Academy of Child and Adolescence Psychiatry. 40. 1401
  • Littlewort, G,Bartlett, M.S,Chenu, J,Fasel, I,Kanda, T,Ishiguro, H,Movellan, J.R. (2004). Advances in neural information processing systems. MIT Press. Cambridge^eMA MA.
  • Littlewort, G,Bartlett, M.S,Fasel, I,Chenu, J,Movellan, J. R. (2004). Analysis of Machine Learning Methods for real-time recognition of facial expressions from video. Computer Vision and Pattern Recognition.
  • Marchetta, N.D. (2007). Cognitive processes in adults with ADHD. Neuropsych Publishers, Maastricht University. Maastricht.
  • Michel, P,El Kaliouby, R. (2003). Real Time Facial Expression Recognition in Video using Support Vector Machines. 5 international conference on Multimodal interfaces.
  • Mulas, F,Etchepareborda, M.C,Abad-Mas, L,Díaz-Lucero, A,Hernández, S,De la Osa, A,Pascuale, M.J,Ruiz-Andrés, R. (2006). Neuropsychological disorders in teenagers with attention deficit hyperactivity disorder. Rev Neurol. 43. 71-81
  • (2012). National Institute of Mental Health. Attention Deficit Hyperactivity Disorder. Bethesda, MD: NIMH Science Writing, Press and Dissemination Branch.
  • Nicolau i Palou, R. (2002). TDAH: el control de las emociones. Fundación ADANA Problemas asociados al TDAH. IIª Jornada.
  • Peninington, B.F,Ozonoff, S. (1996). Executive Functions and Developmental Psychopathology. Journal of Child Psychology and Psychiatry. 37. 51-87
  • Quinlan, J. R. (1986). Induction of decision trees. Machine learning. 1. 81-106
  • Quinlan, J.R. (1993). C4.5Programs for Machine learning. Morgan Kaufmann Publishers, Inc. San Mateo^eCA CA.
  • Reimherr, F. W,Marchant, B.K,Strong, R.E,Hedges, D.W,Alder, L,Spencer, T.J. (2005). Emotional dysregualation in adults with ADHD and response to atomoxetine. Biol Psychiatry. 58. 125-131
  • Rey, A. (1958). L'Examen Clinique en Psychologie. Press Universitaire de France. Paris.
  • Rey, G.J,Feldman, E,Rivas-Vazquez, R,Levin, B.E,Benton, A. (1999). Neuropsychological test development and normative data on Hispanics. Archives of Clinical Neuropsychology. 14. 593-601
  • Sonuga-Barke, E.J. (2003). The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neuroscience & Biobehavioral Reviews. 27. 593-604
  • Tiarnaigh, M. (2005). Adaptive Moodle: An integration of Moodle (Modular Object-Oriented Dynamic Learning Environment) with an AHS (Adaptive Hypermedia System).
  • Toplak, M.E,Jain, U,Tannock, R. (2005). Executive and motivational processes in adolescents with Attention-Deficit-Hyperactivity Disorder (ADHD). BioMed Central, Behavioral and Brain Functions.
  • Van der Elst, W,Van Boxtel, M.P.J,Van Breukelen, G,Jolles, J. (2006). The Concept Shifting Test: Adult Normative Data. Psychological Assessment. 18. 424-432
  • Viola, P,Jones, M. (2001). Robust real-time object detection. International Journal of Computer Vision. 4. 51-52
  • Wilkins, A.J,Shallice, T,McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia. 25. 359