Use of Digitalisation and Machine Learning Techniques in Therapeutic Intervention at Early Ages: Supervised and Unsupervised Analysis

  1. Sáiz-Manzanares, María Consuelo 2
  2. Solórzano Mulas, Almudena 3
  3. Escolar-Llamazares, María Camino 2
  4. Alcantud Marín, Francisco 1
  5. Rodríguez-Arribas, Sandra 4
  6. Velasco-Saiz, Rut 5
  1. 1 Department of Developmental and Educational Psychology, Universitat de València, 46010 València, Spain
  2. 2 DATAHES Research Group, Consolidated Research Unit Nº. 348, Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain
  3. 3 Unidad de Atención Temprana, ASPACE Salamanca, 37185 Villamayor de Armuña, Spain
  4. 4 BEST-AI Research Group, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad de Burgos, 09006 Burgos, Spain
  5. 5 Facultad de Ciencias de la Salud, Universidad de Burgos, 09001 Burgos, Spain
Revista:
Children

ISSN: 2227-9067

Año de publicación: 2024

Volumen: 11

Número: 4

Páginas: 1-17

Tipo: Artículo

DOI: 10.3390/CHILDREN11040381 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Children

Objetivos de desarrollo sostenible

Resumen

Advances in technology and artificial intelligence (smart healthcare) open up a range of possibilities for precision intervention in the field of health sciences. The objectives of this study were to analyse the functionality of using supervised (prediction and classification) and unsupervised (clustering) machine learning techniques to analyse results related to the development of functional skills in patients at developmental ages of 0–6 years. We worked with a sample of 113 patients, of whom 49 were cared for in a specific centre for people with motor impairments (Group 1) and 64 were cared for in a specific early care programme for patients with different impairments (Group 2). The results indicated that in Group 1, chronological age predicted the development of functional skills at 85% and in Group 2 at 65%. The classification variable detected was functional development in the upper extremities. Two clusters were detected within each group that allowed us to determine the patterns of functional development in each patient with respect to functional skills. The use of smart healthcare resources has a promising future in the field of early care. However, data recording in web applications needs to be planned, and the automation of results through machine learning techniques is required.

Información de financiación

Financiadores

Referencias bibliográficas

  • Blackman, (2002), Infants Young Child., 15, pp. 11, 10.1097/00001163-200210000-00004
  • Peterander, F., Speck, O., Pithon, G., and Terrisse, B. (1999). Les Tendances Actuelles de L’intervention Précoce en Europe, Mardaga Publishing House.
  • Federación Estatal de Asociaciones de Profesionales de Atención Temprana (GAT) (2005). Libro Blanco Atencion Temprana, Real Patron sobre Discapac. Available online: http://bit.ly/3zgm2ph.
  • Gómez Artiga, A., Viguer Seguí, P., and Cantero López, M.J. (2005). Intervención Temprana: Desarrollo Óptimo de 0 a 6 Años [Early Intervention: Optimal Development from 0 to 6 Years of Age], Pirámide. Psicología.
  • Anderson, R.G. (1987). Development of Business Information Systems, Blackwell Scientific Publication.
  • Anderson, R.G. (1992). Information and Knowledge-Based Systems: An Introduction, Prentice Hall.
  • Siegler, (2010), Ann. Intern. Med., 153, pp. 671, 10.7326/0003-4819-153-10-201011160-00012
  • Dick, R.S., Steen, E.B., and Detmer, D.E. (1997). The Computer-Based Patient Record: An Essential Technology for Bealth Care, National Academies Press.
  • Aspden, P., Corrigan, J.M., Wolcott, J., and Erickson, S.M. (2004). Committee on Data Standards for Patient Safety: Achieving a New Standard for Care, Institute of Medicine.
  • Schiff, (2010), N. Engl. J. Med., 25, pp. 1066, 10.1056/NEJMp0911734
  • Sierra, I., Díaz-Díaz, N., Barranco, C., and Carrasco-Villalón, R. (2022). Artificial Intelligence-Assisted Diagnosis for Early Intervention Patients. Appl. Sci., 12.
  • Su, (2022), Comput. Educ. Artif. Intell., 3, pp. 100049, 10.1016/j.caeai.2022.100049
  • Chan, (2022), Digit. Health, 8, pp. 20552076221120325
  • Makhni, (2022), Chest, 161, pp. 1343, 10.1016/j.chest.2022.01.009
  • Eloranta, (2022), J. Intern. Med., 292, pp. 278, 10.1111/joim.13483
  • (2019), Siglo Cero, 50, pp. 53
  • Al-rawashdeh, M., Keikhosrokiani, P., Belaton, B., Alawida, M., and Zwiri, A. (2022). IoT Adoption and Application for Smart Healthcare: A Systematic Review. Sensors, 22.
  • Lora, (2023), Proceedings of the International Joint Conference 16th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2023) 14th International Conference on EUropean Transnational Education (ICEUTE 2023), Volume 748, pp. 294
  • Alotaibi, G., Awawdeh, M., Farook, F.F., Aljohani, M., Aldhafiri, R.M., and Aldhoayan, M. (2022). Artificial intelligence (AI) diagnostic tools: Utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically—A retrospective study. BMC Oral Health, 22.
  • Chen, (2022), Brain Inform., 9, pp. 5, 10.1186/s40708-022-00153-9
  • Ryabko, D. (2016, January 19–21). Algorithmic Learning Theory. Proceedings of the 27th International Conference, ALT 2016, Bari, Italy.
  • Maudes, (2012), Inf. Fusion, 13, pp. 20, 10.1016/j.inffus.2010.11.004
  • (2016), Neurocomputing, 201, pp. 66, 10.1016/j.neucom.2016.04.003
  • Manickam, P., Mariappan, S.A., Murugesan, S.M., Hansda, S., Kaushik, A., Shinde, R., and Thipperudraswamy, S.P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 12.
  • Parida, (2022), Health Technol., 12, pp. 329, 10.1007/s12553-022-00648-9
  • Lin, (2022), Omics J. Integr. Biol., 26, pp. 77, 10.1089/omi.2021.0037
  • Chen, (2022), J. Shanghai Jiaotong Univ. (Sci.), 29, pp. 131, 10.1007/s12204-022-2499-1
  • Jones, M.N. (2017). Big Data in Cognitive Science, Routledge.
  • Zhou, (2022), Front. Psychiatry, 13, pp. 811665, 10.3389/fpsyt.2022.811665
  • Liu, Q., Vaci, N., Koychev, I., Kormilitzin, A., Li, Z., and Cipriani, A. (2022). Personalised treatment for cognitive impairment in dementia: Development and validation of an artificial intelligence model. BMC Med., 20.
  • Alty, J., Bai, Q., Li, R., Lawler, K., St George, R.J., Hill, E., Bindoff, A., Garg, S., Wang, X., and Huang, G. (2022). The TAS Test project: A prospective longitudinal validation of new online motor-cognitive tests to detect preclinical Alzheimer’s disease and estimate 5-year risks of cognitive decline and dementia. BMC Neurol., 22.
  • Nichol, (2022), J. Public Health Res., 11, pp. 22799036221127627, 10.1177/22799036221127627
  • Aldhyani, T.H.H., Alsubari, S.N., Alshebami, A.S., Alkahtani, H., and Ahmed, Z.A.T. (2022). Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models. Int. J. Environ. Res. Public Health, 19.
  • Dey, (2022), Patterns, 3, pp. 100493, 10.1016/j.patter.2022.100493
  • Spathis, (2022), Patterns, 3, pp. 100410, 10.1016/j.patter.2021.100410
  • Dawoud, (2023), Non-Coding RNA Res., 8, pp. 60, 10.1016/j.ncrna.2022.09.011
  • Zhu, (2023), Expert Syst. Appl., 212, pp. 118753, 10.1016/j.eswa.2022.118753
  • Li, (2023), J. Ethnopharmacol., 301, pp. 115754, 10.1016/j.jep.2022.115754
  • Sáiz-Manzanares, M.C., Marticorena-Sánchez, R., and Arnaiz-González, Á. (2022). Improvements for Therapeutic Intervention from the Use of Web Applications and Machine Learning Techniques in Different Affectations in Children Aged 0–6 Years. Int. J. Environ. Res. Public Health, 19.
  • Campbell, D.F., and Stanley, J. (2005). Diseños Experimentales y Cuasiexperimentales en la Investigación Social, Amorrortu. 9a reimp.
  • Josse, D. (1997). Scale of Psychomotor Development of Early Childhood Brunet Lézine-Revised, Psymtéc.
  • Newborg, J. (2005). Battelle Developmental Inventory Examiner’s Manual, Riverside.
  • Haley, S.M., Coster, W.J., Ludlow, L.H., Haltiwanger, J.T., and Andrellos, P. (2012). The Pediatric Evaluation of Disability Inventory (PEDI), Pearson Clinical Assessment. [2nd ed.].
  • Bluma, M.S., Shearer, M.S., Frohman, A.H., and Hilliard, J. (1978). Portage Guide to Early Education.
  • IBM Corp (2023). SPSS Statistical Package for the Social Sciences (SPSS), Version 28, IBM Corp.
  • Curk, (2013), J. Mach. Learn. Res., 14, pp. 2349