Integrando teledetección e inventario multi-temporales a escala árbol (Eucalyptus) para predecir dinámica forestal y optimizar la gestión forestal en Mato Grosso, Brasil
- Tupinambá-Simões, F. 1
- Guerra-Hernández, J. 2
- Pascual, A. 3
- Bravo Oviedo, F. 1
- 1 Instituto de Investigación sobre Gestión Forestal Sostenible UVa-INIA
- 2 Centro de Investigación Forestal, Escuela de Agricultura, Universidad de Lisboa
- 3 Departamento de Ciencias Geográficas, Universidad de Maryland
ISSN: 1575-2410, 2386-8368
Année de publication: 2023
Número: 49
Pages: 41-58
Type: Article
D'autres publications dans: Cuadernos de la Sociedad Española de Ciencias Forestales
Résumé
Establishing fast-growing tree species (Eucalyptusspp.) is crucial in supplying forest products to developing econo- mies. However, the increasing frequency, severity and duration of droughts threaten these important ecosystems' viability. In Mato Grosso, Brazil, where water stress is the main limiting factor for eucalyptus, the second-largest drought event in the entire historical series was recorded in 2019. The forest inventory data comprising thousands of tree measurements taken in 2019, 2020, and 2021 have been modeled using mixed effects models to identify the most significant factors influen- cing mortality and growth dynamics of the four different eucalyptus genotypes. An unmanned aerial vehicle (UAV) was used to obtain a mosaic of images in the visible spectrum - red, green, and blue (RGB) - at very high resolution (VHR), in ad- dition to digital surface models (DSM) and vegetation index (VI) calculations, which were used in the classification of mor- tality using object-focused segmentation. Growth and mortality rates were significantly affected during the drought; The drought effect of 2019 was more pronounced in stands with high tree density. Genetic material selection and planting den- sity can be used as silvicultural factors to more efficiently manage forest plantations in the face of climate change effects, including extreme water stress events. Implications: This study illustrates the need to adjust silvicultural guidelines to re- duce the impact of drought on Eucalyptus plantations and how remote sensing technologies, genetic improvements, and ap- plied operational research can be integrated to improve the efficiency and resilience of Eucalyptus plantations and explo- re optimal productivity limits under global change.
Références bibliographiques
- Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi C., R. E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proc. 5th Int. Conf. Precis Agric, July 2015.
- Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
- Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J. P., & Delignette-Muller, M. L. 2015. A toolbox for nonlinear regression in R: The package nlstools. Journal of Statistical Software, 66(5), 1-21. https://doi.org/10.18637/jss.v066.i05
- Booth, T. H. 2013. Eucalypt plantations and climate change. Forest Ecology and Management, 301, 28-34. https://doi.org/10.1016/j.foreco.2012.04.004
- Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. 2008. Synergies among extinction drivers under global change. Trends in Ecology and Evolution, 23(8), 453-460. https://doi.org/10.1016/j.tree.2008.03.011
- Buschmann, C., & Nagel, E. 1993. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711-722. https://doi.org/10.1080/01431169308904370
- Chehata, N., Orny, C., Boukir, S., Guyon, D., & Wigneron, J. P. 2014. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images. International Journal of Remote Sensing, 35(13), 4758-4777. https://doi.org/10.1080/01431161.2014.930199
- dos Reis, G. G., Reis, M. D. G. F., Fontan, I. D. C. I., Monte, M. A., Gomes, A. N., & de Oliveira, C. H. R. 2006. Crescimento de raízes e da parte aérea de clones de híbridos de Eucalyptus grandis X Eucalyptus urophylla e de Eucalyptus camaldulensis X Eucalyptus spp submetidos a dois regimes de irrigaç ão no campo. Revista Arvore, 30(6), 921-931. https://doi.org/10.1590/S0100-67622006000600007
- Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. 2005. Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772
- Gonçalves, J., Pôças, I., Marcos, B., Mücher, C. A., & Honrado, J. P. 2019. SegOptim-A new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data. International Journal of Applied Earth Observation and Geoinformation, 76(December 2018), 218-230. https://doi.org/10.1016/j.jag.2018.11.011
- Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1), 15. https://doi.org/10.1186/s40965-017-0031-6
- Guerra-Hernández, J., Cosenza, D. N., Rodriguez, L. C. E., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. 2018. Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15-16), 5211-5235. https://doi.org/10.1080/01431161.2018.1486519
- Guerra-Hernández, J., González-Ferreiro, E., Monleón, V. J., Faias, S. P., Tomé, M., & Díaz-Varela, R. A. 2017. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands. Forests, 8(8), 1-19. https://doi.org/10.3390/f8080300
- Horn, B. K. P. 1981. Hill Shading and the Reflectance Map. Proceedings of the IEEE, 69(1), 14-47. https://doi.org/10.1109/PROC.1981.11918
- Kataoka, T., & Okamoto, H. 2003. Crop Growth Estimation System Using Machine Vision. Aim, 1079-1083.
- Kirilenko, A. P., & Sedjo, R. A. 2007. Climate change impacts on forestry. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19697-19702. https://doi.org/10.1073/pnas.0701424104
- Laclau, J. P., Gonçalves, J. L. de M., & Stape, J. L. 2013. Perspectives for the management of eucalypt plantations under biotic and abiotic stresses. Forest Ecology and Management, 301(November 2011), 1-5. https://doi.org/10.1016/j.foreco.2013.03.007
- Leblanc, S. 2018. Off-the-Shelf Unmanned Aerial Vehicles for 3D Vegetation Mapping. March.
- Mao, W., Student, P. D., Wang, Y., & Wang, Y. 2003. Real-time Detection of Between-row Weeds Using Machine Vision. 0300(03).
- Miranda, D. L. C., Lisboa, G. D. S., Silva, F. da, Sanquetta, C. R., Corte, A. P. D., & Condé, T. M. 2019. Crescimento de híbridos de eucalipto no estado de Mato Grosso. Advances in Forestry Science, 6(2). https://doi.org/10.34062/afs.v6i2.7360
- Pena, R. F. 2018. ANÁLISE SILVICULTURAL DE CLONES DE EUCALIPTO E CARACTERÍSTICAS PRODUTIVAS DO PASTO EM SISTEMA SILVIPASTORIL, EM CORONEL PACHECO, MG.
- Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., Van Der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., … Torres-Lezama, A. 2009. Drought sensitivity of the amazon rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1164033
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. {{ISBN} 3-900051-07-0}. http://www.r-project.org/
- Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. 1973. Monitoring vegetation systems in the great plains with ERTS.
- Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., & Mergani?, J. 2019. UAV RTK/PPK method-An optimal solution for mapping inaccessible forested areas? Remote Sensing, 11(6). https://doi.org/10.3390/rs11060721
- Verrelst, J., Schaepman, M. E., Koetz, B., & Kneubühler, M. 2008. Angular sensitivity analysis of vegetation indices derived from CHRIS / PROBA data. 112, 2341-2353. https://doi.org/10.1016/j.rse.2007.11.001
- Wang, X., Wang, M., Wang, S., & Wu, Y. 2015. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 31, 152-159. https://doi.org/10.3969/j.issn.1002-6819.2015.05.022
- Wang, Y., Soh, Y. S., & Schultz, H. 2006. Individual Tree Crown Segmentation in Aerial Forestry Images by Mean Shift Clustering and Graph-based Cluster Merging. International Journal of Computer Science and Network Security, 6(11), 40-45.
- Wheeler, T. H. Æ. N. D. T. Æ. H. 2006. Automated crop and weed monitoring in widely spaced cereals. 21-32. https://doi.org/10.1007/s11119-005-6787-1
- Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., & Grehan, A. J. 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. In: Marine Geodesy (Vol. 30, Issues 1-2). https://doi.org/10.1080/01490410701295962
- Zhang, X., Zhang, F., Qi, Y., Deng, L., Wang, X., & Yang, S. 2019. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). International Journal of Applied Earth Observation and Geoinformation, 78(June 2019), 215-226. https://doi.org/10.1016/j.jag.2019.01.001