Análisis cuantitativo de riesgos utilizando "MCSimulRisk" como herramienta didáctica

  1. F Acebes
  2. D Curto
  3. J de Antón
  4. F Villafáñez
Revista:
Dirección y organización: Revista de dirección, organización y administración de empresas

ISSN: 1132-175X

Año de publicación: 2024

Número: 82

Páginas: 87-99

Tipo: Artículo

Otras publicaciones en: Dirección y organización: Revista de dirección, organización y administración de empresas

Resumen

La gestión del riesgo es una disciplina fundamental dentro de la gestión de proyectos, la cual incluye, entre otros, el análisis cuantitativo de los riesgos. A lo largo de varios años de docencia, hemos observado dificultades en los alumnos al realizar Simulación de Monte Carlo, dentro del análisis cuantitativo de los riesgos. El objetivo de este artículo es presentar “MCSimulRisk”, como herramienta docente que permitirá a los estudiantes realizar simulación de Monte Carlo y aplicarlo a proyectos de cualquier complejidad, de una manera sencilla e intuitiva. Esta herramienta posibilita incorporar al modelo cualquier tipo de incertidumbre identificada en el proyecto

Referencias bibliográficas

  • AACE - American Association of Cost Engineering, 2011. Integrated cost and schedule risk analysis using Monte Carlo simulation of a CPM model. AACE International Recommended Practice No. 57R-09.
  • Acebes, F., Pajares, J., Galán, J.M., López-Paredes, A., 2014. A new approach for project control under uncertainty. Going back to the basics. International Journal of Project Management 32, 423–434. https://doi.org/10.1016/j.ijproman.2013.08.003
  • Acebes, F., Pajares, J., Galán, J.M., López-Paredes, A., 2013. Beyond Earned Value Management: A Graphical Framework for Integrated Cost, Schedule and Risk Monitoring. Procedia-Social and Behavioral Sciences 74, 181–189. https://doi.org/10.1016/j.sbspro.2013.03.027
  • Acebes, F., Pajares, J., González-Varona, J.M., LópezParedes, A., 2021a. Project risk management from the bottom-up: Activity Risk Index. Central European Journal of Operations Research 29, 1375–1396. https://doi.org/10.1007/s10100-020-00703-8
  • Acebes, F., Pereda, M., Poza, D., Pajares, J., Galán, J.M., 2015. Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques. International Journal of Project Management 33, 1597– 1609. https://doi.org/10.1016/j.ijproman.2015.06.012
  • Acebes, F., Poza, D., González-Varona, J.M., Pajares, J., López-Paredes, A., 2021b. On the project risk baseline: Integrating aleatory uncertainty into project scheduling. Computers & Industrial Engineering 160, 107537. https://doi.org/10.1016/j.cie.2021.107537
  • Anbari, F.T., 2003. Earned Value Project Management method and extensions. Project Management Journal 34, 12–23. https://doi.org/10.1177/875697280303400403
  • Axelos, 2017. Managing Successful Projects with PRINCE2®, 6th Edition. ed. TSO (The Stationery Office).
  • Barraza, G.A., Bueno, R.A., 2007. Cost Contingency Management. Journal of management in engineering 140–146. https://doi.org/10.1061/(ASCE)0742- 597X(2007)23:3(140)
  • Colin, J., Martens, A., Vanhoucke, M., Wauters, M., 2015. A multivariate approach for top-down project control using earned value management. Decision Support Systems 79, 65–76. https://doi.org/10.1016/j.dss.2015.08.002
  • Curto, D., Acebes, F., González-Varona, J.M., Poza, D., 2022. Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves. International Journal of Production Economics 253, 108626. https://doi.org/10.1016/j.ijpe.2022.108626
  • De Miguel Díaz, M., 2005. Modalidades de enseñanza centradas en el desarrollo de competencias, Departamento de Informática y Automática. Oviedo.
  • European Commission, 2018. Project Management Methodology. Guide 3.0. Publications Office of the European Union, Brussels / Luxembourg.
  • Fleming, Q.W., Koppleman, J.M., 2010. Earned Value Project Management, Fourth Edi. ed, Project Management Institute. Project Management Institute Inc., Newtown Square, Pennsylvania 19073-3299 USA.
  • International Organization for Standardization, 2019. ISO/ IEC 31010:2019 Risk management - Risk assessment techniques.
  • International Project Management Association, 2015. Individual Competence Baseline for Project, Programme & Portfolio Management. Version 4.0, International Project Management Association. https://doi.org/10.1002/ejoc.201200111
  • International Standards Organisation, 2018. ISO31000:2018 Risk management — Guidelines. Iso 31000.
  • Islam, M.S., Nepal, M.P., Skitmore, M., Drogemuller, R., 2021. Risk induced contingency cost modeling for power plant projects. Automation in Construction 123, 103519. https://doi.org/10.1016/j.autcon.2020.103519
  • Kerzner, H., 2022. Project Management. A Systems Approach to Planning, Scheduling, and Controlling, 13th Editi. ed. New York.
  • Kwak, Y.H., Ingall, L., 2007. Exploring Monte Carlo Simulation Applications for Project Management. Risk Management 9, 44–57. https://doi.org/10.1057/palgrave.rm.8250017
  • Kwon, H., Kang, C.W., 2019. Improving Project Budget Estimation Accuracy and Precision by Analyzing Reserves for Both Identified and Unidentified Risks. Project Management Journal 50, 86–100. https://doi.org/10.1177/8756972818810963
  • Lipke, W., 2003. Schedule Is Different. The Measurable News Summer.
  • Liu, J., Jin, F., Xie, Q., Skitmore, M., 2017. Improving risk assessment in financial feasibility of international engineering projects: A risk driver perspective. International Journal of Project Management 35, 204– 211. https://doi.org/10.1016/j.ijproman.2016.11.004
  • Martin, J.J., 1965. Distribution of the Time Through a Directed, Acyclic Network. Operations Research 13, 4– 66. https://doi.org/10.1287/opre.13.1.46
  • Microsoft, 2022. Microsoft Excel [WWW Document]. URL https://www.microsoft.com/es-es/microsoft-365/excel (fecha de acceso 21-02-2022).
  • Oracle, 2022a. Crystal Ball [WWW Document]. URL https://www.oracle.com/es/applications/crystalball/ (fecha de acceso 21-02-2022).
  • Oracle, 2022b. Primavera Risk Analysis [WWW Document]. URL https://www.oracle.com/industries/constructionengineering/primavera-p6/ (fecha de acceso 21-02- 2022).
  • Pajares, J., López-Paredes, A., 2011. An extension of the EVM analysis for project monitoring: The Cost Control Index and the Schedule Control Index. International Journal of Project Management 29, 615–621. https://doi.org/10.1016/j.ijproman.2010.04.005
  • Palisade, 2022. @RISK [WWW Document]. URL https:// www.palisade.com/risk/ (fecha de acceso 21-02-2022).
  • Project Management Institute, 2017. A Guide to the Project Management Body of Knowledge: PMBoK(R) Guide. Sixth Edition, 6th ed. Project Management Institute Inc., Pennsylvania - USA.
  • Project Management Institute, 2004. A Guide to the Project Management Body of Knowledge: PMBoK Guide. Third Edition.
  • Rozenes, S., Vitner, G., Spraggett, S., 2006. Project control: literature review. Project Management Journal 37, 5–14. https://doi.org/10.1177/875697280603700402
  • Rozenes, S., Vitner, G., Spraggett, S., 2004. MPCS: Multidimensional Project Control System. International Journal of Project Management 22, 109–118. https://doi.org/10.1016/S0263-7863(03)00002-4
  • Vanhoucke, M., 2011. On the dynamic use of project performance and schedule risk information during project tracking. Omega 39, 416–426. https://doi.org/10.1016/j.omega.2010.09.006
  • Vanhoucke, M., 2010. Using activity sensitivity and network topology information to monitor project time performance. Omega 38, 359–370. https://doi.org/10.1016/j.omega.2009.10.001 Vose, D., 2008. Risk Analysis: a Quantitative Guide, 3rd ed. ed. Wiley, Chichester, U.K.
  • Wauters, M., Vanhoucke, M., 2014. Support Vector Machine Regression for project control forecasting. Automation in Construction 47, 92–106. https://doi.org/10.1016/j.autcon.2014.07.014
  • White, D., Fortune, J., 2002. Current practice in project management - an empirical study. International Journal of Project Management 20. https://doi.org/10.1016/S0263-7863(00)00029-6
  • Williams, T.M., 1992. Criticality in Stochastic Networks. Journal of the Operational Research Society 43, 353– 357. https://doi.org/10.2307/2583158