Hydrocalumite–TiO2 hybrid systems synthesized from aluminum salt cake for photodegradation of ibuprofen

  1. Rebollo, Beatriz
  2. Jiménez, Alejandro
  3. Trujillano, Raquel
  4. Rives, Vicente
  5. Gil, Antonio
  6. Vicente, Miguel A.
Journal:
Journal of Environmental Chemical Engineering

ISSN: 2213-3437 2213-3437

Year of publication: 2024

Volume: 12

Issue: 2

Pages: 112395

Type: Article

DOI: 10.1016/J.JECE.2024.112395 SCOPUS: 2-s2.0-112395 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of Environmental Chemical Engineering

Abstract

Synthesis of hydrocalumite–TiO2 hybrid systems and their use in photodegradation of ibuprofen is reported forthe first time. Hydrocalumite was prepared with Al3+ recovered from an aluminum slag (circular economy), TiO2was deposited on hydrocalumite by hydrolysis of titanium(IV) isopropoxide, and the solids thus obtained werecalcined at 400 and 750 ºC. The solid calcined at 400 ºC was essentially amorphous, showing the presence ofcalcite due to the fixation of atmospheric CO2, while the solid calcined at 750 ºC was composed of mayenite,perovskite and rutile. The calcined solids were used for catalytic degradation of ibuprofen (50 ppm in aqueoussolutions) under UV irradiation, obtaining better results than when using commercial TiO2–P25 from Degussa.Under the specific conditions used, the degradation took place in the initial steps of the process, mainly givingrise to species with higher molecular mass than initial ibuprofen.

Bibliographic References

  • A. De Roy, C. Forano, J.P. Besse, Layered double hydroxides: synthesis and post-synthesis modification, Pp. 1–39 in: V. Rives (Ed.), Layered Double Hydroxides: Present and future, Nova Science Publishers, Inc., New York (2001).
  • Takaki, (2016), Appl. Clay Sci., 134, pp. 26, 10.1016/j.clay.2016.05.010
  • Linares, (2016), Mater. Sci. Eng. C., 61, pp. 875, 10.1016/j.msec.2016.01.007
  • Radha, (2005), Solid State Sci., 7, pp. 1180, 10.1016/j.solidstatesciences.2005.05.004
  • Murayama, (2012), Int. J. Miner. Process., 110–111, pp. 46, 10.1016/j.minpro.2012.03.011
  • Cavani, (1991), Prop. Appl. Catal. Today, 11, pp. 173
  • López-Salinas, (1996), J. Porous Mater., 2, pp. 291, 10.1007/BF00489810
  • Sánchez-Cantú, (2015), Appl. Clay Sci., 114, pp. 509, 10.1016/j.clay.2015.07.004
  • Granados-Reyes, (2019), Appl. Clay Sci., 180, 10.1016/j.clay.2019.105180
  • Souza Júnior, (2020), Biomass-.-. Convers. Biorefinery, 13, pp. 661, 10.1007/s13399-020-01110-4
  • Jiménez, (2022), ChemEngineering, 6, pp. 64, 10.3390/chemengineering6040064
  • Jiménez, (2023), Catal. Today, 423, 10.1016/j.cattod.2023.01.015
  • Jiménez, (2023), Chem. Eng. J., 473, 10.1016/j.cej.2023.145165
  • Jiménez, (2021), Appl. Clay Sci., 212, 10.1016/j.clay.2021.106217
  • Circular economy: definition, importance and benefits. Topics – European Parliament. 〈https://www.europarl.europa.eu/topics/en/article/20151201STO05603/circular-economy-definition-importance-and-benefits〉 (2023).
  • V. Dal Santo, A. Naldoni (Eds.).Titanium Dioxide Photocatalysis, MDPI Books, 2019. https://doi.org/10.3390/books978-3-03897-695-0.
  • Arun, (2023), Environ. Chem. Lett., 21, pp. 339, 10.1007/s10311-022-01503-z
  • Hersh, (2000), Clin. Ther., 22, pp. 500, 10.1016/S0149-2918(00)80043-0
  • Li, (2017), Chemosphere, 166, pp. 412, 10.1016/j.chemosphere.2016.09.108
  • Da Silva, (2014), J. Mass Spectrom., 49, pp. 145, 10.1002/jms.3320
  • Patterson, (2020), Water Environ. Res., 92, pp. 1152, 10.1002/wer.1310
  • Chopra, (2020), Heliyon, 6, 10.1016/j.heliyon.2020.e04087
  • Hunge, (2022), Recent Pat. Nanotechnol., 17, pp. 5, 10.2174/1872210516666220304162429
  • Hunge, (2022), J. Colloid Interface Sci., 606, pp. 454, 10.1016/j.jcis.2021.07.151
  • Hirami, (2023), J. Colloid Interface Sci., 642, pp. 829, 10.1016/j.jcis.2023.02.136
  • Hunge, (2023), J. Photochem. Photobiol. A Chem., 434, 10.1016/j.jphotochem.2022.114250
  • Jana, (2023), Micro Nano Syst. Lett., 11, pp. 3, 10.1186/s40486-023-00168-9
  • Hunge, (2018), Opt. Mater., 76, pp. 260, 10.1016/j.optmat.2017.12.044
  • Sánchez-Cantú, (2016), Int. J. Photo, 10.1155/2016/5256941
  • Jiménez, (2022), Thermochim. Acta, 713, 10.1016/j.tca.2022.179242
  • Jiménez, (2022), J. Environ. Chem. Eng., 10, 10.1016/j.jece.2022.107546
  • ICDD database. JCPDS – International Centre for Diffraction Data (ICDD®). Newton Square, PA, USA (2022).
  • Brunauer, (1938), J. Am. Chem. Soc., 60, pp. 309, 10.1021/ja01269a023
  • Thommes, (2015), Pure Appl. Chem., 87, pp. 1051, 10.1515/pac-2014-1117
  • Barrett, (1951), J. Am. Chem. Soc., 73, pp. 3155, 10.1021/ja01145a126
  • Tauc, (1970), Mater. Res. Bull., 5, pp. 721, 10.1016/0025-5408(70)90112-1
  • Butlet, (1977), J. Appl. Phys., 48, pp. 1914, 10.1063/1.323948
  • Pérez-Barrado, (2013), Appl. Clay Sci., 80–81, pp. 313, 10.1016/j.clay.2013.05.006
  • Santamaría, (2020), J. Alloy. Compd., 843, 10.1016/j.jallcom.2020.156007
  • Bhatti, (2022), Nanomaterials, 12, pp. 2766, 10.3390/nano12162766
  • Kapishnikov, (2022), Materials, 15, pp. 778, 10.3390/ma15030778
  • Phrompet, (2019), Heliyon, 5, 10.1016/j.heliyon.2019.e01808
  • Dong, (2005), Chem. Commun., 1, pp. 2724, 10.1039/b419206k
  • Porto, (1967), Phys. Rev., 154, pp. 522, 10.1103/PhysRev.154.522
  • Beattie, (1968), Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 307, pp. 407
  • Szabados, (2019), Ultrason. Sonochem., 55, pp. 165, 10.1016/j.ultsonch.2019.02.024
  • Szabados, (2020), J. Catal., 391, pp. 282, 10.1016/j.jcat.2020.07.038
  • Xie, (2021), Crystals, 11, pp. 1296, 10.3390/cryst11111296
  • Tangpakonsab, (2021), Comput. Mater. Sci., 194, 10.1016/j.commatsci.2021.110456
  • Weber, (2021), Catalysts, 11, pp. 1, 10.3390/catal11030334
  • Solís, (2021), Chem. Eng. J., 409, 10.1016/j.cej.2020.128110
  • Kimijima, (2014), CrystEngComm, 16, pp. 5591, 10.1039/C4CE00376D
  • D.A. Skoog, F.J. Holler, T.A. Nieman, Principios de Análisis Instrumental, Quinta Ed., Madrid, 2000.
  • Méndez-Arriaga, (2008), Water Res., 42, pp. 585, 10.1016/j.watres.2007.08.002
  • Caviglioli, (2002), J. Pharm. Biomed. Anal., 30, pp. 499, 10.1016/S0731-7085(02)00400-4
  • Chopra, (2020), Heliyon, 6, 10.1016/j.heliyon.2020.e04087
  • Arthur, (2018), J. Hazard. Mater., 358, pp. 1, 10.1016/j.jhazmat.2018.06.018
  • Liu, (2020), Chem. Eng. J., 387, 10.1016/j.cej.2020.124098
  • Miranda, (2021), RSC Adv., 11, pp. 27720, 10.1039/D1RA04340D
  • Tian, (2014), RSC Adv., 4, pp. 13061, 10.1039/c3ra47304j
  • V. Rives, Layered Double Hydroxides: Present and future, Nova Science Publishers, Inc., New York (2001).
  • Kwon, (1989), Chem. Mater., 1, pp. 381, 10.1021/cm00004a001
  • Chibwe, (1989), J. Chem. Soc. Chem. Commun., pp. 926, 10.1039/c39890000926
  • Li, (2016), Chemosphere, 150, pp. 139, 10.1016/j.chemosphere.2016.02.045
  • Akkari, (2018), Appl. Clay Sci., 160, pp. 3, 10.1016/j.clay.2018.02.027
  • Gaffour, (2022), React. Kinet. Mech. Catal., 135, pp. 3343, 10.1007/s11144-022-02325-4
  • Malinowska, (2023), Environ. Sci. Pollut. Res., 30, pp. 35929, 10.1007/s11356-022-24587-0
  • Guettaia, (2023), React. Kinet. Mech. Catal., 136, pp. 1085, 10.1007/s11144-023-02398-9
  • Castro, (2023), React. Kinet. Mech. Catal., 136, pp. 1705, 10.1007/s11144-023-02430-y