¿De qué temas hablamos en JENUI?Modelado de topics con Latent Dirichlet Allocation (LDA)

  1. Marticorena, Raúl
  2. López Nozal, Carlos
  3. Ramírez-Sanz, José Miguel
  4. Garrido-Labrador, José Luis
Revista:
Actas de las Jornadas sobre la Enseñanza Universitaria de la Informática (JENUI)
  1. Cruz Lemus, José Antonio (coord.)
  2. Dapena, Adriana (coord.)
  3. Paramá Gabia, José Ramón (coord.)

ISSN: 2531-0607

Ano de publicación: 2024

Número: 9

Páxinas: 133-140

Tipo: Artigo

Outras publicacións en: Actas de las Jornadas sobre la Enseñanza Universitaria de la Informática (JENUI)

Resumo

The JENUI (Jornadas en Enseñanza Universitaria en Informática) have been held for three decades, from 1994 to the present day. During this period, the subject matter has evolved, changing the scope and topic of the papers, depending on the progress of computer science and its teaching at university level. The unsupervised text-based learning technique, known as the topic model, improves the understanding of large amounts of textual data by grouping documents into topics. This paper applies this technique by processing the complete proceedings of JENUI with its 1745 documents. Starting from the extraction of text from titles and abstracts, the Latent Dirichlet Allocation (LDA) algorithm is applied, estimating the optimal number of topics. The work constructs a topic classifier with the JENUI articles. In addition, it analyses the distribution of topics and the probabilities of the terms of each topic together with the topic evolution of the papers over time. From a more objective and scientific perspective, it is concluded that there is a thematic evolution over the 27 editions with JENUI proceedings.

Referencias bibliográficas

  • [1] Ricardo Alberich y Joe Miró. La colaboración en el JENUI revisited: la convergencia europea. En Actas de las XV Jornadas de Enseñanza Universitaria de la Informática, JENUI 2009, Barcelona, jul 2009.
  • [2] David M. Blei, Andrew Y. Ng, y Michael I. Jordan. Latent Dirichlet Allocation. J. Mach. Learn. Res., 3:993–1022, 2003.
  • [3] Agustín Cernuda del Río. La recuperación y edición integral de las actas de JENUI. En Actas de las XXVIII Jornadas de Enseñanza Universitaria de la Informática, JENUI 2022, pp. 23 – 30, La Coruña, jul 2022.
  • [4] Sang-Woon Kim y Joon-Min Gil. Research paper classification systems based on TF-IDF and LDA schemes. Human-Centric Computing and Information Sciences, 9(1), AUG 26 2019.
  • [5] Zhongju Liao y Xiaodie Liu. Trending topics and themes in environmental innovation research based on topic modeling. Sustainable Development, 2023.
  • [6] Joe Miró y Ricardo Alberich. La colaboración en el Jenui, a quién nos parecemos y a quién no. En Actas de las X Jornadas de Enseñanza Universitaria de la Informática, JENUI 2004, Alicante, jul 2004.
  • [7] Joe Miró y David López. Un análisis bibliométrico de las JENUI. En Actas de las XVIII Jornadas de Enseñanza Universitaria de la Informática, JENUI 2012, Ciudad Real, jul 2012.
  • [8] Louis Owen. Hyperparameter Tuning with Python: Boost your machine learning model’s performance via hyperparameter tuning. Packt Publishing, 2022.
  • [9] Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, y Harshit Surana. Practical Natural Language Processing: A Comprehensive Guide to Building Real-world NLP Systems. O’Reilly Media, 2020.