Zc States in a Chiral Quark Model
- Ortega, Pablo G. 2
- Segovia, Jorge 1
- Entem, David R. 2
- Fernández, Francisco 2
- 1 Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
- 2 Grupo de Física Nuclear and Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, E-37008 Salamanca, Spain
ISBN: 978-4-89027-136-8
Ano de publicación: 2019
Tipo: Achega congreso
Resumo
Since the discovery of the X(3872) in 2003 several states that do not accommodate on the naive quarkmodel have been discovered by several Collaborations. Among them, the Zc charged states are naturalcandidates for tetraquarks or meson-meson molecules, since their charge force a minimal quark content ccn¯ n¯ with n a light quark. Additionally, their strong coupling to two-meson channels such as J/ψand the closeness of their mass to D(∗)D¯(∗)-channels stimulates different theoretical interpretations,from molecules to tetraquarks or simple kinematic effects.In this work we perform, in the framework of the constituent quark model, a coupled-channels calculation of the isospin-1 JPC = 1+−sector including D(∗)D¯(∗) + h.c., πJ/ψ and ρηc(1S ) channels.The meson-meson interaction is described in terms of quark-quark interaction using the ResonatingGroup Method (RGM). For the quark-quark interaction a nonrelativistic quark model is employed,which satisfactorily describes a wide range of properties of (non)conventional hadrons containingheavy quarks, thus we present a parameter-free calculation.The results support that both Zc(3900)±and Zc(4020)±arise as virtual states below the DD¯ ∗ + h.c.and D∗D¯ ∗thresholds, respectively, which causes an enhancement over such thresholds, describingthe available data. This conclusion coincides with that of the other calculations made with effectiveLagrangians.
Referencias bibliográficas
- 10.1103/PhysRevLett.91.262001
- 10.1103/PhysRevD.81.054023
- 10.1140/epjc/s10052-016-4413-1
- 10.1103/PhysRevLett.90.242001
- 10.1103/PhysRevD.68.032002
- 10.1103/PhysRevD.75.119908
- 10.1103/PhysRevD.94.074037
- 10.1140/epjc/s10052-016-4144-3
- 10.1103/PhysRevLett.108.122001
- 10.1103/PhysRevLett.110.252001
- 10.1016/j.physletb.2013.10.041
- 10.1103/PhysRevLett.112.022001
- 10.1103/PhysRevLett.119.072001
- 10.1103/PhysRevLett.111.242001
- 10.1103/PhysRevLett.112.132001
- 10.1103/PhysRevLett.113.212002
- 10.1103/PhysRevD.88.054007
- 10.1140/epjc/s10052-013-2635-z
- 10.1103/PhysRevD.90.074020
- 10.1142/S0217751X15300021
- 10.1103/PhysRevD.88.016004
- 10.1103/PhysRevD.96.034026
- 10.1103/PhysRevD.89.054019
- 10.1140/epjc/s10052-014-3122-x
- 10.1103/PhysRevD.90.054009
- 10.1103/PhysRevD.91.034009
- 10.1088/0954-3899/31/5/017
- 10.1103/PhysRevD.90.016003
- 10.1016/j.physletb.2016.02.025
- 10.1103/PhysRevLett.117.242001
- 10.1103/PhysRevD.92.034004
- 10.1140/epja/i2014-14103-1