Geometry and causality for efficient multiloop representations
-
1
Deutsche Elektronen-Synchrotron DESY
info
-
2
Universitat de València
info
ISSN: 2666-4003
Ano de publicación: 2022
Tipo: Artigo
Outras publicacións en: SciPost Physics Proceedings
Resumo
Multi-loop scattering amplitudes constitute a serious bottleneck in current high-energy physics computations. Obtaining new integrand level representations with smooth behaviour is crucial for solving this issue, and surpassing the precision frontier. In this talk, we describe a new technology to rewrite multi-loop Feynman integrands in such a way that non-physical singularities are avoided. The method is inspired by the Loop-Tree Duality (LTD) theorem, and uses geometrical concepts to derive the causal structure of any multi-loop multi-leg scattering amplitude. This representation makes the integrand much more stable, allowing faster numerical simulations, and opens the path for novel re-interpretations of higher-order corrections in QFT.
Información de financiamento
Financiadores
Referencias bibliográficas
- 10.1016/j.physrep.2021.03.006
- 10.1007/BF02824407
- 10.1007/BF02756527
- 10.1016/0550-3213(72)90279-9
- 10.1140/epjc/s10052-017-5023-2
- 10.1140/epjc/s10052-021-08996-y
- 10.1088/1126-6708/2008/09/065
- 10.1016/j.nuclphysbps.2008.09.114
- 10.1007/JHEP10(2010)073
- 10.1007/JHEP03(2013)025
- 10.1007/JHEP11(2014)014
- 10.22323/1.260.0037
- 10.3390/sym13061029
- 10.1007/JHEP02(2016)044
- 10.22323/1.234.0479
- 10.22323/1.235.0082
- 10.1007/JHEP08(2016)160
- 10.1007/JHEP10(2016)162
- 10.1140/epjc/s10052-018-5692-5
- 10.1007/JHEP02(2019)143
- 10.1140/epjc/s10052-021-09094-9
- 10.1007/JHEP06(2021)089
- 10.1007/JHEP12(2019)163
- 10.1103/PhysRevLett.124.211602
- 10.1007/JHEP04(2021)129
- 10.1007/JHEP01(2021)069
- 10.1063/1.1703676
- 10.1007/JHEP05(2017)148
- 10.1103/PhysRevLett.122.111603
- 10.1103/PhysRevLett.123.059902
- 10.1103/PhysRevD.101.116014
- 10.1016/0003-4916(75)90006-8
- 10.1103/PhysRevD.102.125004
- 10.1103/PhysRevD.104.036014
- 10.1140/epjc/s10052-021-09235-0
- 10.1007/JHEP04(2021)183
- 10.1007/JHEP02(2021)112