Geometry and causality for efficient multiloop representations

  1. Sborlini, German 12
  1. 1 Deutsche Elektronen-Synchrotron DESY
    info

    Deutsche Elektronen-Synchrotron DESY

    Hamburgo, Alemania

    ROR https://ror.org/01js2sh04

  2. 2 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

Revista:
SciPost Physics Proceedings

ISSN: 2666-4003

Ano de publicación: 2022

Tipo: Artigo

DOI: 10.21468/SCIPOSTPHYSPROC.7.047 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: SciPost Physics Proceedings

Resumo

Multi-loop scattering amplitudes constitute a serious bottleneck in current high-energy physics computations. Obtaining new integrand level representations with smooth behaviour is crucial for solving this issue, and surpassing the precision frontier. In this talk, we describe a new technology to rewrite multi-loop Feynman integrands in such a way that non-physical singularities are avoided. The method is inspired by the Loop-Tree Duality (LTD) theorem, and uses geometrical concepts to derive the causal structure of any multi-loop multi-leg scattering amplitude. This representation makes the integrand much more stable, allowing faster numerical simulations, and opens the path for novel re-interpretations of higher-order corrections in QFT.

Información de financiamento

Referencias bibliográficas

  • 10.1016/j.physrep.2021.03.006
  • 10.1007/BF02824407
  • 10.1007/BF02756527
  • 10.1016/0550-3213(72)90279-9
  • 10.1140/epjc/s10052-017-5023-2
  • 10.1140/epjc/s10052-021-08996-y
  • 10.1088/1126-6708/2008/09/065
  • 10.1016/j.nuclphysbps.2008.09.114
  • 10.1007/JHEP10(2010)073
  • 10.1007/JHEP03(2013)025
  • 10.1007/JHEP11(2014)014
  • 10.22323/1.260.0037
  • 10.3390/sym13061029
  • 10.1007/JHEP02(2016)044
  • 10.22323/1.234.0479
  • 10.22323/1.235.0082
  • 10.1007/JHEP08(2016)160
  • 10.1007/JHEP10(2016)162
  • 10.1140/epjc/s10052-018-5692-5
  • 10.1007/JHEP02(2019)143
  • 10.1140/epjc/s10052-021-09094-9
  • 10.1007/JHEP06(2021)089
  • 10.1007/JHEP12(2019)163
  • 10.1103/PhysRevLett.124.211602
  • 10.1007/JHEP04(2021)129
  • 10.1007/JHEP01(2021)069
  • 10.1063/1.1703676
  • 10.1007/JHEP05(2017)148
  • 10.1103/PhysRevLett.122.111603
  • 10.1103/PhysRevLett.123.059902
  • 10.1103/PhysRevD.101.116014
  • 10.1016/0003-4916(75)90006-8
  • 10.1103/PhysRevD.102.125004
  • 10.1103/PhysRevD.104.036014
  • 10.1140/epjc/s10052-021-09235-0
  • 10.1007/JHEP04(2021)183
  • 10.1007/JHEP02(2021)112