Geometry and causal flux in multi-loop Feynman diagrams

  1. Sborlini, German Fabricio Roberto 12
  1. 1 Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
  2. 2 Instituto de ísica Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Paterna, Valencia
Revista:
Suplemento de la Revista Mexicana de Física

ISSN: 2683-2585

Año de publicación: 2022

Volumen: 3

Número: 2

Páginas: 020703-1-020703-7

Tipo: Artículo

DOI: 10.31349/SUPLREVMEXFIS.3.020703 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Suplemento de la Revista Mexicana de Física

Resumen

In this review, we discuss recent developments concerning efficient calculations of multi-loop multi-leg scattering amplitudes. Inspired by the remarkable properties of the Loop-Tree Duality (LTD), we explain how to reconstruct an integrand level representation of scattering amplitudes which only contains physical singularities. These so-called causal representations can be derived from connected binary partitions of Feynman diagrams, properly entangled according to specific rules. We will focus on the detection of flux orientations which are compatible with causality, describing the implementation of a quantum algorithm to identify such configurations.