The Influence of Hand Dimensions on Finger Flexion during Lower Paleolithic Stone Tool Use in a Comfortable Grip
- Fedato, Annapaola 6
- Silva-Gago, María 1
- Terradillos-Bernal, Marcos 2
- Alonso-Alcalde, Rodrigo 34
- Bruner, Emiliano 5
-
1
Instituto de Ciencias do Patrimonio
info
Instituto de Ciencias do Patrimonio
Santiago de Compostela, España
-
2
Universidad Internacional Isabel I de Castilla
info
- 3 Área de Didáctica y Dinamización, Museo de la Evolución Humana, Paseo Sierra de Atapuerca nº2, 09002 Burgos, Spain
-
4
Universidad de Burgos
info
-
5
Museo Nacional de Ciencias Naturales
info
-
6
Centro Nacional de Investigación sobre la Evolución Humana
info
Centro Nacional de Investigación sobre la Evolución Humana
Burgos, España
ISSN: 2571-550X
Año de publicación: 2024
Volumen: 7
Número: 3
Páginas: 29
Tipo: Artículo
Otras publicaciones en: Quaternary
Resumen
Considering the biomechanical and cognitive aspects involved in tool manipulation, hand size emerges as a critical factor. Males, on average, exhibit greater grip strength attributed to larger hand dimensions. Beyond mere physical factors, cognitive components tied to visuospatial abilities also influence stone tool use. However, the intricate relationship between hand size, grip strength, and ergonomic patterns necessitates further exploration. Here, we study the ergonomic pattern of phalanx flexion during the manipulation of Lower Paleolithic stone tools (choppers and handaxes) to understand the nuanced interplay between hand dimensions and grasping behaviors in Lower Paleolithic stone tool use. The static hand posture during the comfortable grasping of each tool is measured using a motion capture hand glove. Flexions are measured at the metacarpophalangeal joint, the proximal interphalangeal joint and the distal interphalangeal joint of each finger. Our investigation into Lower Paleolithic stone tool manipulation reveals gender-based differences in phalanx flexion, with hand dimensions showing correlation only in pooled samples. However, these associations diminish when analyzing males and females separately. This study suggests a minimal link between hand size and grasping behavior within our sample, hinting at the influence of cognitive, behavioral, and motor factors. Exploring lifestyle and psychometric profiles could provide further insights. In the context of early human technology, our results prompt considerations on the evolution of the hand-tool interaction system, linking our tool-dependent culture to our phylogenetic history.
Información de financiación
Financiadores
-
Spanish Government
- PGC2018-093925-B-C31/32
-
Junta de Castilla y León
- EDU/574/2018
- Italian Institute of Anthropology
Referencias bibliográficas
- Marzke, M.W. (2013). Tool making, hand morphology and fossil hominins. Philos. Trans. R. Soc. B Biol. Sci., 368.
- Trinkaus, (1991), Am. J. Phys. Anthropol., 84, pp. 249, 10.1002/ajpa.1330840303
- Feix, (2015), IEEE Trans. Hum.-Mach. Syst., 46, pp. 66, 10.1109/THMS.2015.2470657
- Key, (2015), J. Hum. Evol., 78, pp. 60, 10.1016/j.jhevol.2014.08.006
- Key, (2019), Sci. Rep., 9, pp. 16724, 10.1038/s41598-019-53332-w
- Karakostis, (2021), Curr. Biol., 31, pp. 1317, 10.1016/j.cub.2020.12.041
- Napier, (1956), J. Bone Joint Surg. Br., 38, pp. 902, 10.1302/0301-620X.38B4.902
- Marzke, (1986), J. Hum. Evol., 15, pp. 439, 10.1016/S0047-2484(86)80027-6
- Key, (2018), Archaeol. Anthropol. Sci., 10, pp. 989, 10.1007/s12520-016-0433-x
- Rots, (2010), J. Archaeol. Sci., 37, pp. 1946
- Luque, (2017), J. Anthropol Sci., 95, pp. 1
- Hatala, (2018), J. Hum. Evol., 119, pp. 14, 10.1016/j.jhevol.2018.02.008
- Fedato, (2020), Archaeol. Anthropol. Sci., 12, pp. 254, 10.1007/s12520-020-01189-w
- Sartori, L., Straulino, E., and Castiello, U. (2011). How objects are grasped: The interplay between affordances and end-goals. PLoS ONE, 6.
- Fedato, A., Silva-Gago, M., Terradillos-Bernal, M., Alonso-Alcalde, R., Martín-Guerra, E., and Bruner, E. (2019). Electrodermal activity during Lower Paleolithic stone tool handling. Am. J. Hum. Biol., 31.
- Fedato, (2021), Archaeol. Anthropol. Sci., 13, pp. 9
- Bruner, (2016), Quat. Int., 405, pp. 98, 10.1016/j.quaint.2015.05.019
- Bruner, E., Spinapolice, E., Burke, A., and Overmann, K.A. (2018). Visuospatial integration: Paleoanthropological and archaeological perspectives. Evolution of Primate Social Cognition, Springer.
- Seo, (2008), Hum. Factors, 50, pp. 734, 10.1518/001872008X354192
- Nevill, (2000), Ergonomics, 43, pp. 1547, 10.1080/001401300750003970
- Peolsson, (2001), J. Rehabil. Med., 33, pp. 36, 10.1080/165019701300006524
- Mesa, (2002), J. Hand Surg., 27, pp. 897, 10.1053/jhsu.2002.34315
- Imrhan, (2003), Int. J. Ind. Ergon., 31, pp. 303, 10.1016/S0169-8141(02)00221-4
- Peebles, (2003), Appl. Ergon., 34, pp. 73, 10.1016/S0003-6870(02)00073-X
- Nicolay, (2005), Int. J. Ind. Ergon., 35, pp. 605, 10.1016/j.ergon.2005.01.007
- Hart, (2018), Age, 1, pp. 001
- Key, (2011), J. Archaeol. Sci., 38, pp. 1663, 10.1016/j.jas.2011.02.032
- Marzke, (1997), Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol., 102, pp. 91, 10.1002/(SICI)1096-8644(199701)102:1<91::AID-AJPA8>3.0.CO;2-G
- Schneider, (2012), Nat. Methods, 9, pp. 671, 10.1038/nmeth.2089
- Kanchan, (2011), J. Forensic Leg. Med., 18, pp. 14, 10.1016/j.jflm.2010.11.013
- Cobos, (2010), Comput. Methods Biomech. Biomed. Eng., 13, pp. 305, 10.1080/10255840903208171
- Hammer, (2001), Palaeontol. Electron., 4, pp. 9
- Fedato, A., Silva-Gago, M., Terradillos-Bernal, M., Alonso-Alcalde, R., Martín-Guerra, E., and Bruner, E. (2019). Hand morphometrics, electrodermal activity, and stone tools haptic perception. Am. J. Hum. Biol., 32.
- Barut, (2014), HOMO, 65, pp. 338, 10.1016/j.jchb.2014.03.004
- Kanchan, (2009), J. Forensic Sci., 54, pp. 546, 10.1111/j.1556-4029.2009.01018.x
- Isaac, G.L. (1977). Olorgesailie: Archaeological Studies of a Middle Pleistocene Lake Basin in Kenya, University of Chicago Press.
- Cabanès, J., Borel, A., Preysler, J.B., Lourdeau, A., and Moncel, M.-H. (2022). Palaeolithic polyhedrons, spheroids and bolas over time and space. PLoS ONE, 17.
- Assaf, E., Baena Preysler, J., and Bruner, E. (2023). Lower Paleolithic Shaped Stone Balls—What Is Next? Some Cultural–Cognitive Questions. Quaternary, 6.
- Napier, (1962), Nature, 196, pp. 409, 10.1038/196409a0
- Edgren, (2004), Hum. Factors, 46, pp. 244, 10.1518/hfes.46.2.244.37337
- Hesse, (2011), Vis. Res., 51, pp. 1223, 10.1016/j.visres.2011.03.014
- Murali, A., Liu, W., Marino, K., Chernova, S., and Gupta, A. (2020, January 16–18). Same object, different grasps: Data and semantic knowledge for task-oriented grasping. Proceedings of the 4th Conference on Robot Learning (CoRL 2020), Virtual.
- Petersen, (1989), Am. J. Occup. Ther., 43, pp. 444, 10.5014/ajot.43.7.444
- Seegelke, (2013), Acta Psychol., 144, pp. 513, 10.1016/j.actpsy.2013.09.002
- Scanlan, K. (2021). Seeing Women in Stone: A Spatial Analysis of Lithic Technology and Use-Wear to Identify a Norton Tradition Ena on the Kvichak River, Bristol Bay, Alaska. J. Northwest Anthropol., 55.
- Assaf, (2021), Camb. Archaeol. J., 31, pp. 281, 10.1017/S0959774320000359
- Malafouris, L. (2016). Material engagement and the embodied mind. Cognitive Models in Palaeolithic Archaeology, Oxford University Press.
- Tunik, (2007), Neuroimage, 36, pp. T77, 10.1016/j.neuroimage.2007.03.026
- Turvey, (2011), Philos. Trans. R. Soc. B Biol. Sci., 366, pp. 3123, 10.1098/rstb.2011.0159
- Ackerley, (2015), Neuropsychologia, 79, pp. 192, 10.1016/j.neuropsychologia.2015.06.024
- Bruner, (2018), Prog. Brain Res., 238, pp. 325, 10.1016/bs.pbr.2018.06.013
- Shea, (2017), Evol. Anthropol. Issues News Rev., 26, pp. 200, 10.1002/evan.21547
- Plummer, (2004), Am. J. Phys. Anthropol., 125, pp. 118, 10.1002/ajpa.20157
- Malafouris, (2010), Soc. Cogn. Affect. Neurosci., 5, pp. 264, 10.1093/scan/nsp057