Effects of selected root exudates components on soil Pseudomonas spp. community structures and abundances

  1. Tan, S.C. 1
  2. Liu, J.Y. 12
  3. Khashi u Rahman, M. 1
  4. Ma, C.L. 1
  5. Wu, F.Z. 1
  6. Zhou, X.G. 1
  1. 1 Northeast Agricultural University
    info

    Northeast Agricultural University

    Harbin, China

    ROR https://ror.org/0515nd386

  2. 2 Jilin Academy of Agricultural Sciences
    info

    Jilin Academy of Agricultural Sciences

    Changchun, China

    ROR https://ror.org/022mwqy43

Revista:
Allelopathy Journal

ISSN: 0971-4693 0973-5046

Año de publicación: 2020

Volumen: 50

Número: 1

Páginas: 85-94

Tipo: Artículo

DOI: 10.26651/ALLELO.J/2020-50-1-1276 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Allelopathy Journal

Resumen

Plant-microbes interactions in soil are mainly driven by plant root exudates. However,how different compounds present in root exudates can affect the specific soil microbialcommunities has not been well studied yet. We studied the glucose, succinic, p-hydroxybenzoic,p-coumaric and glutamic acids on soil Pseudomonas spp. communality in a microcosmexperiment. Soils were treated with these selected root exudates (20 μg carbon/g soil), andPseudomonas spp. community structure and abundance were estimated by PCR-denaturinggradient gel electrophoresis and quantitative PCR, respectively. All treatments increased theabundance of Pseudomonas spp. community and this increase was highest in the glutamic acidtreatment. Moreover, all treatments changed the Pseudomonas spp. community structure. Alltreatments, except glucose, decreased the community diversity of Pseudomonas spp. Ourfindings suggested that various organic compounds found in plant root exudates differed in theirabilities to influence the soil Pseudomonas spp. community.

Referencias bibliográficas

  • 1. Badri, D.V., Chaparro, J.M., Zhang, R., Shen, Q. and Vivanco, J.M. (2013). Application of natural blends ofphytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-relatedcompounds predominantly modulate the soil microbiome. The Journal of Biological Chemistry 288:4502-4512.
  • 2. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M. (2006). The role of root exudates inrhizosphere interactions with plants and other organisms. Annul Reviews in Plant Biology 57: 233-266.
  • 3. Baziramakenga, R., Leroux, G. and Simard, R. (1995). Effects of benzoic and cinnamic acids on membranepermeability of soybean roots. Journal of Chemical Ecology 21: 1271-1285.
  • 4. Bressan, M., Roncato, M.A., Bellvert, F., Comte, G., el Zahar Haichar, F., Achouak, W. and Berge, O. (2009).Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphereand plant roots. The ISME Journal 3: 1243-1257.
  • 5. Broeckling, C.D., Broz, A.K. Bergelson, J. Manter, D.K. and Vivanco, J.M. (2008). Root exudates regulatesoil fungal community composition and diversity. Applied and Environmental Microbiology 74: 738-744.
  • 6. Carrillo, Y., Bell, C., Koyama, A., Canarini, A., Boot, C.M., Allenstein, M. and Pendall, E. (2017). Plant traits,stoichiometry and microbes as drivers of decomposition in the rhizosphere in a temperate grassland. Journalof Ecology 105: 1750-1765.
  • 7. Eilers, K.G., Lauber, C.L., Knight, R. and Fierer, N. (2010). Shifts in bacterial community structureassociated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry 42:896-903.
  • 8. Fierer, N. and Jackson, R.B. (2006). The diversity and biogeography of soil bacterial communities.Proceedings, National Academy of Sciences of United States of America 103: 626-631.
  • 9. Garbeva, P., van Veen, J.A. and van Elsas, J.D. (2004). Assessment of the diversity and antagonism towardsRhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMSMicrobiology and Ecology 47: 51-64.
  • 10. Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., Jones, D.L., Wu, J. and Kuzyakov, Y. (2017). Ricerhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility ofSoils 53: 37-48.
  • 11. Goldfarb, K.C., Karaoz, U., Hanson, C.A., Santee, C.A., Bradford, M.A., Treseder, K.K., Wallenstein, M.D.and Brodie, E.L. (2011). Differential growth responses of soil bacterial taxa to carbon substrates of varyingchemical recalcitrance. Frontiers in Microbiology 2: 00094.
  • 12. Inderjit, Wardle, D.A., Karban, R. and Callaway, R.M. (2011). The ecosystem and evolutionary contexts ofallelopathy. Trends in Ecology & Evolution 26: 655- 662.
  • 13. Jia, H.T., Liu, J.Y., Shi, Y.J., Li, D.L., Wu, F.Z. and Zhou, X.G. (2019). Characterization of cucumberrhizosphere bacterial community with high-throughput amplicon sequencing. Allelopathy Journal 47:103-112.
  • 14. Jin, X. Wu, F. and Zhou, X. (2020). Different toxic effects of ferulic and p-hydroxybenzoic acids oncucumber seedlings growth related to their different influences on rhizosphere microbial composition.Biology and Fertility of Soils 56: 125-136
  • 15. Jin, X., Zhang, J. Shi, Y. Wu, F. and Zhou, X. (2019). Green manures of Indian mustard and wild rocketenhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial communitycomposition. Plant and Soil 441: 283-300.
  • 16. Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N. and Lugtenberg, B. (2006).Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effectson activities of rhizosphere bacteria. Molecular Plant-Microbe Interactions 19: 250- 256.
  • 17 Li, H.Y., Zhou, X.G. and Wu, F.Z. (2018). Effects of root exudates from potato onion on Verticillium dahliae.Allelopathy Journal 43: 217- 222.
  • 18 Liang, Z.Y., Li, X.Y. Zhang, H. Li, J. Bian, X.J. and Xu, J.C. (2018). Allelopathic effects of Bermuda grass(Cynodon dactylon L.) root exudates on seed germination and seedling growth of Tall fescue (Festucaarundinacea Schreb). Allelopathy Journal 44: 25- 34.
  • 19. Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review ofMicrobiology 63: 541- 556.
  • 20. Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J.,Engelbrektson, A., Kunin, V. and del Rio, T.G. (2012). Defining the core Arabidopsis thaliana rootmicrobiome. Nature 488: 86- 90.
  • 21. Ma, X.M., Liu, Y., Zarebanadkouki, M., Razavi, B.S., Blagodatskaya, E. and Kuzyakov, Y. (2018).Spatiotemporal patterns of enzyme activities in the rhizosphere: Effects of plant growth and root morphology.Biology and Fertility of Soils 54: 819- 828.
  • 22. Paterson, E., Gebbing, T., Abel, C., Sim, A. and Telfer, G. 2006. Rhizodeposition shapes rhizospheremicrobial community structure in organic soil. New Phytologist 173: 600- 610.
  • 23. Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S. and Ley, R.E. (2013).Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings, NationalAcademy of Sciences of the United States of America 110: 6548- 6553.
  • 24. Phillips, R.P., Finzi, A.C. and Bernhardt, E.S. (2011). Enhanced root exudation induces microbial feedbacksto N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters 14: 187- 194.
  • 25. Pramanik, M.H.R., Nagai, M., Asao, T. and Matsui, Y. (2000). Effects of temperature and photoperiod onphytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. Journal of Chemical Ecology
  • 26: 1953- 1967.26. Premathilake, U., Wathugala, D.L. and Dharmadasa, R.M. (2018). Phytotoxic potential of lemongrass(Cymbopogon citrates (DC.) Stapf). Allelopathy Journal 44: 261-268.
  • 27. Rudrappa, T., Czymmek, K.J., Pare, P.W. and Bais, H.P. (2008). Root-secreted malic acid recruits beneficialsoil bacteria. Plant Physiology 148: 1547- 1556.
  • 28. Schneckenberger, K., Demin, D. Stahr, K. and Kuzyakov, Y. (2008). Microbial utilization and mineralizationof [14C] glucose added in six orders of concentration to soil. Soil Biology and Biochemistry 40: 1981-1988.
  • 29. Shi, S., Richardson, A.E., O'Callaghan, M., Deangelis, K.M., Jones, E.E., Stewart, A., Firestone M.K. andCondron L.M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMSMicrobiology Ecology 77: 600-610.
  • 30. Stringlis, I.A., Yu, K., Feussner, K., de Jonge, R., van Bentum, S., Van Verk, M.C., Berendsen, R.L., Bakker,P., Feussner I. and Pieterse C.M.J. (2018). MYB72-dependent coumarin exudation shapes root microbiomeassembly to promote plant health. Proceedings, National Academy of Sciences of the United States ofAmerica 115: E5213-E5222.
  • 31. Sultana, N., Zhao, J., Zheng, Y., Cai, Y.F., Faheem, M., Peng, X.L., Wang, W.D. and Jia, Z.J. (2019). Stableisotope probing of active methane oxidizers in rice field soils from cold regions. Biology and Fertility ofSoils 55: 243-250.
  • 32. Trofymow, J.A., Coleman, D.C. and Cambardella, C. (1987). Rates of rhizodeposition and ammoniumdepletion in the rhizosphere of axenic oat roots. Plant and Soil 97: 333-344.
  • 33. van der Heijden, M.G., Bardgett, R.D. and van Straalen, N.M. (2008). The unseen majority: Soil microbes asdrivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
  • 34. Vančura, V. and Hovadik, A. (1965). Root exudates of plants: II. Composition of root exudates of somevegetables. Plant and Soil 22: 21-32.
  • 35. Wang, Z., Zhang, J., Wu, F. and Zhou, X. (2018). Changes in rhizosphere microbial communities in pottedcucumber seedlings treated with syringic acid. PloS one 13: e0200007.
  • 36. Xia, Z.C., Yu, L., He, Y., Korpelainen, H. and Li, C.Y. (2019) Broadleaf trees mediate chemically the growthof Chinese fir through root exudates. Biology and Fertility of Soil 55: 737-749.
  • 37. Yu, J.Q. and Matsui, Y. (1997). Effects of root exudates of cucumber (Cucumis sativus) and allelochemicalson ion uptake by cucumber seedlings. Journal of Chemical Ecology 23: 817-827.
  • 38. Zhang, J.H., Pan, D.D., Ge, X., Shen, Y.H., Qiao, P.L., Yang, S.Y., Wu, F.Z. and Zhou, X.G. (2018). Effects ofsyringic acid on Fusarium and Trichoderma communities in cucumber (Cucumis sativus L.) seedlingrhizosphere. Allelopathy Journal 44: 181-190.
  • 39. Zhou, X., Liu, J. and Wu, F. (2017). Soil microbial communities in cucumber monoculture and rotationsystems and their feedback effects on cucumber seedling growth. Plant and Soil 415: 507-520.
  • 40. Zhou, X., Yu, G. and Wu, F. (2012). Responses of soil microbial communities in the rhizosphere of cucumber(Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid. Journal of Chemical Ecology 38:975-983.
  • 41. Zhou, X.G., Wang, J. Jin, X., Li, D.L., Shi, Y.J. and Wu, F.Z. (2019). Effects of selected cucumber rootexudates components on soil Trichoderma spp. communities. Allelopathy Journal 47: 257-266.
  • 42. Zhou, X., Zhang, J., Pan, D., Ge, X., Jin, X., Chen, S. and Wu, F. (2018a). p-Coumaric can alter thecomposition of cucumber rhizosphere microbial communities and induce negative plant-microbialinteractions. Biology and Fertility of Soil 54: 363-372.
  • 43. Zhou, X.G., Wang, Z.L., Pan, D.D. and Wu, F.Z. (2018b). Effects of vanillin on cucumber (Cucumis sativus L.)seedling rhizosphere Bacillus and Pseudomonas spp. community structures. Allelopathy Journal 43:255-264.
  • 44. Zwetsloot, M.J., Kessler, A. and Bauerle, T.L. (2018). Phenolic root exudate and tissue compounds varywidely among temperate forest tree species and have contrasting effects on soil microbial respiration. NewPhytologist 218: 530-541.