Cell-free and cell-based antidiabetic effects and chemical characterization of rice bran from Thai cultivars
- Pansiri, Suphitsara
- Trigueros, Esther
- Gomes, Nelson G.M.
- Andrade, Paula B.
- Duangsrisai, Sutsawat
- Oliveira, Andreia P.
ISSN: 0963-9969, 1873-7145
Any de publicació: 2024
Volum: 196
Pàgines: 1-12
Tipus: Article
Altres publicacions en: Food Research International
Resum
Rice bran is a valuable by-product of rice milling, prized for its nutritional value and health benefits. This study investigates the antidiabetic properties of rice bran from fifteen commercially available Thai rice cultivars (six brown, four red and five purple). Bran samples were initially screened on their antioxidant potential and ability to inhibit α-glucosidase, as well as on γ-oryzanol levels, total phenolic and total flavonoid contents. Top-ranked cultivars were thoroughly investigated for their antidiabetic potential, samples from red and purple cultivars exhibiting greater activity. Samples from the red cultivar Hom Mali Dang (HMD) demonstrated higher potential to inhibit the activity of α-amylase and aldose reductase (IC50 values of 413.19 ± 57.04 and 205.42 ± 26.47 µg/mL, respectively), along with potent α-glucosidase inhibition in Caco-2 cells (IC50 = 158 µg/mL). Our study highlights the potential of underexplored Thai rice bran cultivars, particularly HMD, as a promising ingredient for diabetic-friendly food supplements.
Referències bibliogràfiques
- Artasensi, (2020), Molecules, 25, pp. 1987, 10.3390/molecules25081987
- Bandumula, N. (2018). Rice production in Asia: Key to global food security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1323–1328. doi: 10.1007/s40011-017-0867-7.
- Blainski, (2013), Molecules, 18, pp. 6852, 10.3390/molecules18066852
- Bopitiya, (2014), Tropical Agricultural Research, 26, pp. 1, 10.4038/tar.v26i1.8067
- Bordiga, (2014), Food Research International, 65, pp. 282, 10.1016/j.foodres.2014.03.007
- Boue, (2016), Journal of Agricultural and Food Chemistry, 64, pp. 5345, 10.1021/acs.jafc.6b01909
- Chen, (2024), Food Research International, 175, 10.1016/j.foodres.2023.113722
- Chotimarkorn, (2008), Food Chemistry, 111, pp. 636, 10.1016/j.foodchem.2008.04.031
- Decker, (1995), Nutrition Reviews, 53, pp. 49, 10.1111/j.1753-4887.1995.tb01502.x
- Enaru, (2021), Antioxidants, 10, pp. 1967, 10.3390/antiox10121967
- Dunlop, (2000), Kidney International, 58, pp. S3, 10.1046/j.1523-1755.2000.07702.x
- Ferreira, (2016), Food Chemisytry, 194, pp. 117, 10.1016/j.foodchem.2015.07.142
- Ferreres, (2021), Food Chemistry, 342, 10.1016/j.foodchem.2020.128323
- Figueiredo-González, (2016), Industrial Crops and Products, 94, pp. 621, 10.1016/j.indcrop.2016.09.036
- Gharravi, (2018), Diabetes & Metabolic Syndrome, 12, pp. 1133, 10.1016/j.dsx.2018.06.021
- Gul, (2015), Bioactive Carbohydrates and Dietary Fibre, 6, pp. 24, 10.1016/j.bcdf.2015.06.002
- Gullón, (2017), Industrial Crops and Products, 107, pp. 105, 10.1016/j.indcrop.2017.05.034
- Heim, (2002), The Journal of Nutritional Biochemistry, 13, pp. 572, 10.1016/S0955-2863(02)00208-5
- Huang, (2020), Biomedicine & Pharmacotherapy, 121, 10.1016/j.biopha.2019.109554
- Huang, (2016), Journal of Food and Drug Analysis, 24, pp. 564, 10.1016/j.jfda.2016.01.004
- International Diabetes Federation (IDF). (2021). IDF Diabetes Atlas, 10th ed. Brussels, 15 Belgium. <https://www.diabetesatlas.org> Accessed March 15, 2024.
- Jung, (2017), Nutrients, 9, pp. 571, 10.3390/nu9060571
- Kalita, (2018), PLoS One, 13, pp. e0191025, 10.1371/journal.pone.0191025
- Kannan, (2010), Peptides, 31, pp. 1629, 10.1016/j.peptides.2010.05.018
- Khlifi, (2013), Food and Chemical Toxicology, 55, pp. 202, 10.1016/j.fct.2013.01.004
- Kozuka, (2013), Obesity Research & Clinical Practice, 7, pp. e165, 10.1016/j.orcp.2013.02.003
- Leon, (2015), World Journal of Diabetes, 6, pp. 1246, 10.4239/wjd.v6.i13.1246
- Liang, (2014), Molecules, 19, pp. 19180, 10.3390/molecules191119180
- Malunga, (2018), Journal of Food Biochemistry, 42, pp. e12635, 10.1111/jfbc.12635
- Massarolo, (2017), Journal of Cereal Science, 75, pp. 54, 10.1016/j.jcs.2017.03.012
- Mattei, (2021), Molecular and Cellular Endocrinology, 537, 10.1016/j.mce.2021.111423
- Nagendra Prasad, (2011), Journal of Nutrition & Food Science, 1, pp. 108
- Panyathep, (2020), Journal of Food Biochemistry, 44, pp. e13487, 10.1111/jfbc.13487
- Ren, (2023), Food Chemistry, 408, 10.1016/j.foodchem.2022.135230
- Rice-Evans, (1995), Free Radical Research, 22, pp. 375, 10.3109/10715769509145649
- Rice Research and Development Division (2016). Rice knowledge bank. <https://newwebs2.ricethailand.go.th/webmain/rkb3/Varieties.htm>.
- Rozema, (2022), Advances in Ophthalmology Practice and Research, 2, 10.1016/j.aopr.2022.100048
- Sivamaruthi, (2018), Asian Pacific Journal of Tropical Biomedicine, 8, pp. 79, 10.4103/2221-1691.221142
- Sun, (2015), Food Research International, 78, pp. 114, 10.1016/j.foodres.2015.10.029
- Swargiary, (2023), Journal of Biomolecular Structure & Dynamics, 41, pp. 3862, 10.1080/07391102.2022.2058092
- Tan, (2023), Nutrients, 15, pp. 2503, 10.3390/nu15112503
- Trigueros, (2024), Antioxidants, 13, pp. 205, 10.3390/antiox13020205
- Vargas, (2018), Food Research International, 113, pp. 57, 10.1016/j.foodres.2018.06.069
- Vinholes, (2011), Food Chemistry, 129, pp. 454, 10.1016/j.foodchem.2011.04.098
- Wang, (2019), Food Science & Nutrition, 7, pp. 779, 10.1002/fsn3.926
- Wongwichai, (2019), Biomedicine & Pharmacotherapy, 112, 10.1016/j.biopha.2019.108610
- Xu, (2017), Euphytica, 213, pp. 243, 10.1007/s10681-017-2035-9
- Yu, (2007), Journal of Agricultural and Food Chemistry, 55, pp. 7308, 10.1021/jf071957p
- Zeb, (2020), Journal of Food Biochemistry, 44, pp. e13394, 10.1111/jfbc.13394
- Zheng, (2020), Food Chemistry, 317, 10.1016/j.foodchem.2020.126346