Structure of non-autonomous attractors for a class of diffusively coupled ODE
- Carvalho, Alexandre N. 1
- Rocha, Luciano R. N. 1
- Langa, José A. 3
- Obaya, Rafael 2
- 1 Instituto de Ciências Matemáticas e de Computaçao, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 - São Carlos SP, Brazil
- 2 IMUVA, Instituto de Matemáticas, Universidad de Valladolid
- 3 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 - Sevilla, Spain
ISSN: 1531-3492, 1553-524X
Argitalpen urtea: 2023
Alea: 28
Zenbakia: 1
Orrialdeak: 426-448
Mota: Artikulua
Beste argitalpen batzuk: Discrete and Continuous Dynamical Systems - B
Laburpena
In this work we will study the structure of the skew-product attractor for a planar diffusively coupled ordinary differential equation, given by $\dot{x}= k(y-x)+x-\beta(t)x^3$ and $\dot{y}= k(x-y)+y-\beta(t)y^3$, $t\geq 0$. We identify the non-autonomous structures that completely describes the dynamics of this model giving a Morse decomposition for the skew-product attractor. The complexity of the isolated invariant sets in the global attractor of the associated skew-product semigroup is associated to the complexity of the attractor of the associated driving semigroup. In particular, if $\beta$ is asymptotically almost periodic, the isolated invariant sets will be almost periodic hyperbolic global solutions of an associated globally defined problem.
Erreferentzia bibliografikoak
- E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho, J. A. Langa.Stability of gradient semigroups under perturbation, <i>Nonlinearity</i>, <b>24</b> (2011), 2099-2117.
- E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho, J. A. Langa.Non-autonomous Morse decomposition and Lyapunov functions for dynamically gradient processes, <i>Trans. Amer. Math. Soc.</i>, <b>365</b> (2013), 5277-5312.
- A. V. Babin and M. I. Vishik, <i>Attractors of Evolution Equations</i>, North Holland, Amsterdam, 1992.
- M. C. Bortolan, A. N. Carvalho and J. A. Langa, <i>Attractors Under Autonomous and Non-Autonomous Perturbations</i>, Mathematical Surveys and Monographs, 246. American Mathematical Society, Providence, RI, 2020.
- M. C. Bortolan, A. N. Carvalho, J. A. Langa and G. Raugel, Non-autonomous perturbations of Morse-Smale semigroups: Stability of the phase diagram, <i>J. Dyn, Diff. Eq.</i>, in press.
- M. C. Bortolan, T. Caraballo, A. N. Carvalho, J. A. Langa.Skew-product semiflows and Morse decomposition, <i>J. Differential Equations</i>, <b>255</b> (2013), 2436-2462.
- T. Caraballo, A. N. Carvalho, J. A. Langa and A. N. Oliveira-Sousa, The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations, <i>J. Math. Anal. Appl.</i>, <b>500</b> (2021), Paper No. 125134, 27 pp.
- T. Caraballo, J. A. Langa, Z. Liu.Gradient infinite-dimensional random dynamical systems, <i>SIAM J. Appl. Dyn. Syst.</i>, <b>11</b> (2012), 1817-1847.
- T. Caraballo, J. A. Langa, R. Obaya, A. M. Sanz.Global and cocycle attractors for non-autonomous reaction-diffusion equations, The case of null upper Lyapunov exponent, <i>J. Differential Equations</i>, <b>265</b> (2018), 3914-3951.
- A. N. Carvalho, J. A. Langa.An extension of the concept of gradient semigroups which is stable under perturbation, <i>J. Diff. Eq.</i>, <b>246</b> (2009), 2646-2668.
- A. N. Carvalho, J. A. Langa and J. C. Robinson, <i>Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems</i>, Applied Mathematical Sciences, 182. Springer, New York, 2013.
- A. N. Carvalho, J. A. Langa, J. C. Robinson.Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation, <i>Proc. Amer. Math. Soc.</i>, <b>140</b> (2012), 2357-2373.
- A. N. Carvalho, J. A. Langa, J. C. Robinson, A. Suárez.Characterization of non-autonomous attractors of a perturbed gradient system, <i>J. Diff. Eq.</i>, <b>236</b> (2007), 570-603.
- N. Chafee, E. F. Infante.A bifurcation problem for a nonlinear partial differential equation of parabolic type, <i>Applicable Anal.</i>, <b>4</b> (1974/75), 17-37.
- V. V. Chepyzhov, M. I. Vishik.Attractors of nonautonomous dynamical systems and their dimension, <i>J. Math. Pures Appl.</i>, <b>73</b> (1994), 279-333.
- V. V. Chepyzhov and M. I. Vishik, <i>Attractors for Equations of Mathematical Physics</i>, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.
- C. Conley, <i>Isolated Invariant Sets and the Morse Index</i>, American Mathematical Society, Providence, R. I., 1978.
- G. Fusco, J. K. Hale.Slow-motion manifolds, dormant instability and singular perturbations, <i>J. Dyn. Diff. Equations</i>, <b>1</b> (1989), 75-94.
- J. K. Hale, <i>Ordinary Differential Equations</i>, Interscience, New York, 1969.
- J. K. Hale, <i>Asymptotic Behavior of Dissipative Systems</i>, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988.
- J. K. Hale, X. B. Lin, G. Raugel.Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, <i>Math. Comp.</i>, <b>50</b> (1988), 89-123.
- J. K. Hale, L. T. Magalhães and W. M. Oliva, <i>An Introduction to Infinite-dimensional Dynamical Systems - Geometric Theory</i>, Applied Mathematical Sciences, 47. Springer-Verlag, New York, 1984.
- J. K. Hale, G. Raugel.Lower semi-continuity of attractors of gradient systems and applications, <i>Ann. Mat. Pur. Appl.</i>, <b>154</b> (1989), 281-326.
- J. K. Hale, G. Raugel.Convergence in dynamically gradient systems with applications to PDE, <i>Z. Angew. Math. Phys.</i>, <b>43</b> (1992), 63-124.
- D. Henry, <i>Geometric Theory of Semilinear Parabolic Equations</i>, Springer-Verlag, Berlin-New York, 1981.
- P. E. Kloeden and M. Rasmussen, <i>Nonautonomous Dynamical Systems</i>, American Mathematical Society, Providence, RI, 2011.
- O. A. Ladyzhenskaya, <i>Attractors for Semigroups and Evolution Equations</i>, Cambridge University Press, Cambridge, 1991.
- J. A. Langa, J. C. Robinson.Determining asymptotic behavior from the dynamics on attracting sets, <i>J. Dyn. Diff. Eq.</i>, <b>11</b> (1999), 319-331.
- D. E. Norton.The fundamental theorem of dynamical systems, <i>Comment. Math. Univ. Carolin.</i>, <b>36</b> (1995), 585-597.
- J. C. Robinson, <i>Infinite-Dimensional Dynamical Systems</i>, Cambridge University Press, Cambridge, 2001.
- G. R. Sell and Y. You, <i>Dynamics of Evolutionary Equations</i>, Springer-Verlag, New York, 2002.
- R. Temam, <i>Infinite-Dimensional Dynamical Systems in Mechanics and Physics</i>, Springer-Verlag, New York, 1988.
- M. I. Vishik, <i>Asymptotic Behaviour of Solutions of Evolutionary Equations</i>, Cambridge University Press, Cambridge, 1992.