Estimación de parámetros en distribuciones de dirección del viento

  1. Martínez Gutiérrez, Samuel 1
  2. Sarabia, Daniel 1
  3. Merino, Alejandro 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Revue:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Année de publication: 2024

Número: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10821 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

Résumé

One of the fundamental characteristics to be studied when characterising the wind resource of a wind farm candidate site is the distribution of the wind direction.One of the most commonly used methods to model the distribution of the wind direction is to use a finite mixture of von Mises distributions (mvM), whose parameters are usually obtained using the method of least squares. Traditionally, this method fits the cumulative distribution function (cdf), however, in this paper we propose to fit the probability density function (pdf) as it has computational advantages.To compare both methods, the coefficient of determination (R2) is evaluated on both the pdf (R2pdf) and the cdf (R2cdf) using parameters from each approach. Generally, adjusting parameters via the least squares method on the pdf proves quicker and yields better R2pdf without significantly impacting in R2cdf.

Références bibliographiques

  • Carta, J. A., Bueno, C., & Ramírez, P. (2008). Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Conversion and Management, 49(5), 897–907. https://doi.org/10.1016/J.ENCONMAN.2007.10.017 DOI: https://doi.org/10.1016/j.enconman.2007.10.017
  • Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renewable and Sustainable Energy Reviews, 13(5), 933–955. https://doi.org/10.1016/J.RSER.2008.05.005 DOI: https://doi.org/10.1016/j.rser.2008.05.005
  • Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., Garciá-Bustamante, E., Fidel González-Rouco, J., Navarro, J., Sastre-Marugán, M., Sile, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Rodrigo, J. S., & Mann, J. (2020). The Making of the New European Wind Atlas - Part 2: Production and evaluation. Geoscientific Model Development, 13(10), 5079–5102. https://doi.org/10.5194/GMD-13-5079-2020 DOI: https://doi.org/10.5194/gmd-13-5079-2020
  • Drew, D. R., Barlow, J. F., Cockerill, T. T., & Vahdati, M. M. (2015). The importance of accurate wind resource assessment for evaluating the economic viability of small wind turbines. Renewable Energy, 77, 493–500. https://doi.org/10.1016/J.RENENE.2014.12.032 DOI: https://doi.org/10.1016/j.renene.2014.12.032
  • Erdem, E., & Shi, J. (2011). Comparison of bivariate distribution construction approaches for analysing wind speed and direction data. Wind Energy, 14(1), 27–41. https://doi.org/10.1002/WE.400 DOI: https://doi.org/10.1002/we.400
  • Hahmann, A. N., Sile, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., Garciá-Bustamante, E., Fidel González-Rouco, J., Navarro, J., Olsen, B. T., & Söderberg, S. (2020). The making of the New European Wind Atlas - Part 1: Model sensitivity. Geoscientific Model Development, 13(10), 5053–5078. https://doi.org/10.5194/GMD-13-5053-2020 DOI: https://doi.org/10.5194/gmd-13-5053-2020
  • Koeppl, G. W. (1982). Putnam’s power from the wind. Van Nostrand Reinhold Company,New York, NY.
  • Masseran, N., Razali, A. M., Ibrahim, K., & Latif, M. T. (2013). Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia. Energy Conversion and Management, 72, 94–102. https://doi.org/10.1016/J.ENCONMAN.2012.11.025 DOI: https://doi.org/10.1016/j.enconman.2012.11.025
  • New European Wind Atlas. (n.d.). Retrieved October 16, 2023, from https://map.neweuropeanwindatlas.eu/
  • SUMARIO DEL BOLETÍN 33/2008| BOCYL. (2008). https://bocyl.jcyl.es/boletin.do?fechaBoletin=18/02/2008
  • The MathWorks Inc. (2024a). MATLAB version: 24.1 (R2024a). The MathWorks Inc. https://www.mathworks.com
  • The MathWorks Inc. (2024b). Optimization Toolbox version: 24.1 (R2024a). The MathWorks Inc. https://www.mathworks.com
  • Wang, H., Xiao, T., Gou, H., Pu, Q., & Bao, Y. (2023). Joint distribution of wind speed and direction over complex terrains based on nonparametric copula models. Journal of Wind Engineering and Industrial Aerodynamics, 241, 105509. https://doi.org/10.1016/J.JWEIA.2023.105509 DOI: https://doi.org/10.1016/j.jweia.2023.105509
  • Wang, J., Hu, J., & Ma, K. (2016). Wind speed probability distribution estimation and wind energy assessment. Renewable and Sustainable Energy Reviews, 60, 881–899. https://doi.org/10.1016/J.RSER.2016.01.057 DOI: https://doi.org/10.1016/j.rser.2016.01.057
  • Yang, Z., Lin, Y., & Dong, S. (2022). Joint Model of Wind Speed and Corresponding Direction Based on Wind Rose for Wind Energy Exploitation. Journal of Ocean University of China, 21(4), 876–892. https://doi.org/10.1007/s11802-022-4860-2 DOI: https://doi.org/10.1007/s11802-022-4860-2