Estimación del coeficiente de potencia en turbinas eólicas
-
1
Universidad de Burgos
info
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Year of publication: 2024
Issue: 45
Type: Article
Abstract
This work is framed in the development of digital twins in the field of power generation through wind farms. In order to develop these twins and apply them to different real wind farms, one of the problems that appears is the existence of a greatvariety of wind turbines with different characteristics. Manufacturers usually provide very few information, and among the data usually provided is the power-wind curve. However, one of the key parameters in the mathematical modeling of a turbine is the power coefficient, especially in today’s turbines, in which the power regulation is done through the pitch angle, and therefore this coefficient depends not only on the tip-speed-ratio but also on the pitch angle. This paper proposes a methodology to calculate the family of power coefficient curves from the manufacturers' power-wind curves.
Bibliographic References
- Ahmed, D.; Karim, F.; Ahmad, A. Design and modeling of low-speed axial flux permanent magnet generator for wind based micro-generation systems. In Proceedings of the 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), Islamabad, Pakistan, 22–24 April 2014; pp. 51–57. DOI: https://doi.org/10.1109/iCREATE.2014.6828338
- Carranza, O., Reyes, V., Rodríguez, J.J., Ortega, R., 2023. Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle. Energies 2023, 16, 2774. DOI: https://doi.org/10.3390/en16062774
- D. Marten. 2019. QBlade: A Modern Tool for the Aeroelastic Simulation of Wind Turbines. PhD thesis, TU Berlin. DOI: 10.14279/depositonce-10646.
- Jonkman, J., Butterfield, S., Musial, W., & Scott, G., 2009. Definition of a 5-MW reference wind turbine for offshore system development. Contract, February, 1–75. http://tethys-development.pnnl.gov/sites/default/files/publications/Jonkman_et_al_2009.pdf DOI: 10.3923/ijbc.2010.190.202 DOI: https://doi.org/10.2172/947422
- Freeman, J., Jorgenson, J., Gilman, P., & Ferguson, T., 2014. Reference Manual for the System Advisor Model’s Wind Power Performance Model. DOI: https://doi.org/10.2172/1150800
- González, M. E., Vázquez, F., & Morilla, F. (2010). Control multivariable centralizado con desacoplo para aerogeneradores de velocidad variable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 7(4), 53–64. DOI: 10.4995/RIAI.2010.04.08 DOI: https://doi.org/10.1016/S1697-7912(10)70060-1
- Mathew, S., 2007. Wind energy: Fundamentals, resource analysis and economics. DOI: 10.1007/3-540-30906-3/COVER
- Manyonge, A. W., Ochieng, R. M., Onyango, F. N., & Shichikha, J. M., 2012. Mathematical Modelling of Wind Turbine in a Wind Energy Conversion System: Power Coefficient Analysis. Applied Mathematical Sciences, 6(91), 4527–4536.
- Mur Amada, J. (2009). Curso de energía eólica. Master Europeo En Energías Renovables y Eficiencia Energética, 108.
- Rodríguez, J. L., Burgos, J. C., Arnalte, S., 2003. Sistemas eólicos de producción de energía eólica. Rueda S.L.
- Safont, J., 2016. Simulador generador eléctrico doblemente alimentado. In PhD Thesis, pp. 21-25.
- Shi, G.; Zhu, M.; Cai, X.; Wang, Z.; Yao, L. Generalized average model of DC wind turbine with consideration of electromechanical transients. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE, Vienna, Austria, 10–13 November 2013.
- T. Ackermann, “Wind Power in Power Systems,” 2005. [Online]. Available: http://www.ets.kth.se/ees , pp. 562-563. DOI: https://doi.org/10.1002/0470012684