Preprocesado de imagen y OCR para mejorar deteccion de smishing
- Blanco Medina, Pablo 1
- Carofilis, Andrés 1
- Fidalgo, Eduardo 1
- Alegre, Enrique 1
-
1
Universidad de León
info
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Año de publicación: 2024
Número: 45
Tipo: Artículo
Resumen
La globalización de las tecnologías de comunicación ha llevado a un aumento de las estafas mediante técnicas de phishing. Los Equipos de Respuesta ante Emergencias Informáticas (CERTs) reciben capturas de pantalla enviadas por usuarios cuyos smartphones reciben mensajes sospechosos. Estos SMS tratan de suplantar compañías conocidas para persuadir a sus usuarios de tomar acciones urgentes, robando sus datos o realizando acciones no autorizadas en sus cuentas bancarias. Estos mensajes se conocen como Smishing, y los CERTs están interesados en herramientas que permitan automatizar la extracción de URLs en capturas de pantalla para verificar si contienen phishing. En este trabajo, proponemos una estrategia de extracción de URLs de capturas de pantalla que combinan técnicas tradicionales de visión artificial, como preprocesado y operaciones morfológicas, con mecanismos de detección y reconocimiento de URL para recuperar las URLs sospechosas. Evaluando nuestra propuesta en 117 capturas de Smishing que contienen 121 URLs, logramos una precisión del 61.16% en la recuperación de URLs en mensajes Smishing.
Referencias bibliográficas
- Choudhary, N., Jain, A. K., 2018. Comparative analysis of mobile phishing detection and prevention approaches. In: Information and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 1 2. Springer, pp. 349–356. DOI: https://doi.org/10.1007/978-3-319-63673-3_43
- Goel, D., Jain, A. K., 2018. Smishing-classifier: a novel framework for detection of smishing attack in mobile environment. In: Smart and Innovative Trends in Next Generation Computing Technologies: Third International Conference, NGCT 2017, Dehradun, India, October 30-31, 2017, Revised Selected Papers, Part II 3. Springer, pp. 502–512. DOI: https://doi.org/10.1007/978-981-10-8660-1_38
- Jain, A. K., Yadav, S. K., Choudhary, N., 2020. A novel approach to detect spam and smishing sms using machine learning techniques. International Journal of E-Services and Mobile Applications (IJESMA) 12 (1), 21–38. DOI: https://doi.org/10.4018/IJESMA.2020010102
- Jánez-Martino, F., Alaiz-Rodríguez, R., Gonzalez-Castro, V., Fidalgo, E., Alegre, E., 2023. Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach. Applied Soft Computing 139, 110226. DOI: https://doi.org/10.1016/j.asoc.2023.110226
- Jánez-Martino, F., Alaiz-Rodríguez, R., Gonzalez-Castro, V., Fidalgo, E., Alegre, E., 2023. A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artificial Intelligence Review 56 (2), 1145–1173. DOI: https://doi.org/10.1007/s10462-022-10195-4
- Li, M., Lv, T., Chen, J., Cui, L., Lu, Y., Florencio, D., Zhang, C., Li, Z., Wei, F., 2023. Trocr: Transformer-based optical character recognition with pre-trained models. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. pp. 13094–13102. DOI: https://doi.org/10.1609/aaai.v37i11.26538
- Mishra, S., Soni, D., 2023. Dsmishsms-a system to detect smishing sms. Neural Computing and Applications 35 (7), 4975–4992. DOI: https://doi.org/10.1007/s00521-021-06305-y
- Rahman, M. L., Timko, D., Wali, H., Neupane, A., 2023. Users really do respond to smishing. In: Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy. pp. 49–60. DOI: https://doi.org/10.1145/3577923.3583640
- Sanchez-Paniagua, M., Fernández, E. F., Alegre, E., Al-Nabki, W., González-Castro, V., 2022. Phishing url detection: A real-case scenario through login urls. IEEE Access 10, 42949–42960. DOI: https://doi.org/10.1109/ACCESS.2022.3168681
- Smith, R., 2007. An overview of the tesseract ocr engine. In: ICDAR ’07: Proceedings of the Ninth International Conference on Document Analysis and Recognition. IEEE Computer Society, Washington, DC, USA, pp. 629–633. DOI: https://doi.org/10.1109/ICDAR.2007.4376991
- Timko, D., Rahman, M. L., 2023. Commercial anti-smishing tools and their comparative effectiveness against modern threats. In: Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks. pp. 1–12. DOI: https://doi.org/10.1145/3558482.3590173
- Uddin, M. S., Sultana, M., Rahman, T., Busra, U. S., 2012. Extraction of texts from a scene image using morphology based approach. In: 2012 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE, pp. 876–880.
- Wang, Y., Liu, Y., Wu, T., Duncan, I., 2020. A cost-effective ocr implementation to prevent phishing on mobile platforms. In: 2020 International Conference on Cyber Securit DOI: https://doi.org/10.1109/CyberSecurity49315.2020.9138873