Grafos interactivos de regresión con modelos lineales generales

  1. Escobar Mercado, Modesto 1
  2. Calvo López, Cristina 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Redes: Revista hispana para el análisis de redes sociales

ISSN: 1579-0185

Any de publicació: 2025

Títol de l'exemplar: Organizaciones, cuidados e inclusión social

Volum: 36

Número: 1

Pàgines: 35-53

Tipus: Article

DOI: 10.5565/REV/REDES.1050 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Redes: Revista hispana para el análisis de redes sociales

Resum

Este trabalho apresenta uma metodologia inovadora na análise de dados dentro da pesquisa social, destacando a aplicação de gráficos e análise de regressão na representação gráfica de resultados estatísticos. A proposta central centra-se na utilização de gráficos em grelha para uma interpretação mais clara e acessível das relações entre variáveis, tanto quantitativas como qualitativas. Esta abordagem é complementada por uma análise crítica dos métodos tradicionais, especialmente no que diz respeito à categoria de contraste de base e à relevância das margens e dos efeitos marginais nos modelos estatísticos. É apresentada uma metodologia que não apenas aborda o esclarecimento conceitual no campo da regressão estatística, mas também propõe formas visuais inovadoras de representar e analisar dados complexos.

Referències bibliogràfiques

  • Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: Wiley.
  • Ai, C., & Norton, E. C. (2003). Interaction Terms in Logit and Probit Models. Economics Letters, 80(1), 123-129. https://doi.org/10.1016/S0165-1765(03)00032-6
  • Albarello, F., Crocetti, E., & Rubini, M. (2018). I and Us: A Longitudinal Study on the Interplay of Personal and Social Identity in Adolescence. Journal of Youth and Adolescence, 47, 689-702. https://doi.org/10.1007/s10964-017-0791-4
  • Bartus, T. (2005). Estimation of Marginal Effects using margeff. The Stata Journal, 5(3), 309-329. https://doi.org/10.1177/1536867X0500500303
  • Bishop, C. (2006). Pattern Recognition and Machine Learning (Vol. 2). Singapore, KYO: Springer Science+Business Media, LLC.
  • Bowling, A., See-Tai, S., Ebrahim, S., Gabriel, Z., & Solanki, P. (2005). Attributes of Age-Identity. Ageing & Society, 25(4), 479-500. https://doi.org/10.1017/S0144686X05003818
  • Brown, A., Kirpal, S., Rauner, F. (2007). Identities at Work. Vol. 5. Springer Science & Business Media. Dordrecht, Springer.
  • Caza, B. B., Vough, H., & Puranik, H. (2018). Identity Work in Organizations and Occupations: Definitions, Theories, and Pathways Forward. Journal of Organizational Behavior, 39(7), 889-910. https://doi.org/10.1002/job.2318
  • Christofides, N. (1975). Graph Theory: An Algorithmic Approach (Computer Science and Applied Mathematics). Academic Press, Inc.
  • Constantini, G., & Perugini, M. (2016). The Network of Conscientiousness. Journal of Research in Personality, 65(1), 68–88. https://doi.org/10.1016/j.jrp.2016.10.003
  • Croft, A., Schmader, T., Block, K., & Baron, A. S. (2014). The Second Shift Reflected in the Second Generation: Do Parents’ Gender Roles at Home Predict Children’s Aspirations?. Psychological Science, 25(7), 1418-1428. https://doi.org/10.1177/0956797614533968
  • Eagly, A. H., & Wood, W. (2012). Social Role Theory. Handbook of Theories of Social Psychology, 2, 458-476.
  • Easley, D. y J. Kleinberg (2010). Networks, Crowds and Markets. Cambridge: Cambridge University Press.
  • Erikson, E. H. (1980). Identity and the Life Cycle. WW Norton & company.
  • Escobar, M. (2015). Studying Coincidences with Network Analysis and Other Multivariate Tools. The Stata Journal, 15(4), 1118-1156. https://doi.org/10.1177/1536867X1501500410
  • Escobar, M. (2016). Ensayo sobre las coincidencias. En A. Almarcha, P. González, y L. Román (Eds.), Donde la Sociología te lleve. A Coruña: Universidad de A Coruña.
  • Escobar, M. E., Gil, E., & Calvo, C. (2022). Análisis de la dinámica, la estructura y el contenido de los mensajes de Twitter: violencia sexual en# Cuéntalo. Empiria: Revista de Metodología de Ciencias Sociales, (53), 89-119. https://doi.org/https://doi.org/10.5944/empiria.53.2022.32614
  • Escobar, M. y H. Román (2011). La presentación del yo en el ciberespacio. Un análisis de las autodefiniciones personales en blogs y redes sociales. Revista de Psicología Social, 26(2, 207-222. https://doi.org/10.1174/021347411795448947
  • Escobar, M. y L. Martínez-Uribe (2020). Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93(11), 1-31. https://doi.org/10.18637/jss.v093.i11
  • Escobar, M., & Prieto, C. (2018). El análisis reticular de coincidencias. Empiria: Revista de Metodología de Ciencias Sociales, (39), 103-128. https://doi.org/10.5944/empiria.39.2018.20879
  • Escobar, M., Barrios, D., Prieto, C. Martínez-Uribe, L., Calvo, C. (2023). netCoin: Interactive networks with R. Disponible en: https://cran.r-project.org/package=netCoin.
  • Escobar, M., y C. Tejero (2018). El análisis reticular de coincidencias. Empiria: Revista de Metodología de Ciencias Sociales, (39), 129-148. https://doi.org/10.5944/empiria.39.2018.20879
  • Figuerola, C. G., Mercado, M. E., Rodríguez, A. Z., & Berrocal, J. L. A. (2021). Redes y comunidades de descriptores en artículos de biblioteconomía y ciencia de la información (1971-2020): Análisis de su evolución temporal mediante técnicas de análisis de redes. Scire: Representación y Organización del Conocimiento, 27(1), 71-84. https://doi.org/10.54886/scire.v27i1.4778
  • Gandomi, A., & Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  • Gelman, A., & Hill, J. (2006). Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
  • Gomes da Morais, de Miguel, M., Cardenas, J. M., & Calvo, E. (2020). Comparison of Radiological Criteria for Hyperprogressive Disease in Response to Immunotherapy. Cancer Treatment Reviews, 91, 1-7. https://doi.org/10.1016/j.ctrv.2020.102116
  • Greene, W. H. (2003). Econometric Analysis, 4th edition. International Edition, New Jersey: Prentice Hall.
  • Haberman, S. J. (1973). The Analysis of Residuals in Cross-Classified Tables. Biometrics, 29, 205-220. https://doi.org/10.2307/2529686
  • Haberman, S. J. (1978). Analysis of Qualitative Data. Vol. 1 Introductory Topics. New York: Academic Press.
  • Hofman, J. M., Sharma, A., & Watts, D. J. (2017). Prediction and Explanation in Social Systems. Science, 355(6324), 486-488. https://doi.org/10.1126/science.aal3856
  • Isvoranu, A.M. et al. (2022). Network Psychometrics with R: A Guide for Behavioral and Social Scientists. Routledge.
  • Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Kendall M.G. (1938). A new measure of rank correlation. Biometrika 30: 81–89. https://doi.org/10.1093/biomet/30.1-2.81
  • Koester, S.W., Bishay, A.E., Lyons, A.T., Lu, V.M., Naik, A., Graffeo, C.S., Levi, A.D., Komotar, R.J. (2023). The Neurosurgery Match: Covid-19 Comparison and Bibliometric Analysis. World Neurosurgery, 178, 13-23. https://doi.org/10.1016/j.wneu.2023.05.093
  • Kuhn, M. H. y T. S. Mcpartland (1954). An Empirical Investigation of Self-Attitudes. American Sociological Review, 19, 68-76. https://doi.org/10.2307/2088175
  • Lachman, M. E., Teshale, S., & Agrigoroaei, S. (2015). Midlife as a Pivotal Period in the Life Course: Balancing Growth and Decline at the Crossroads of Youth and Old Age. International Journal of Behavioral Development, 39(1), 20-31. https://doi.org/10.1177/0165025414533223
  • Madsen, H., & Thyregod, P. (2011). Introduction to General and Generalized Linear Models (Chapman & Hall/CRC Texts in Statistical Science). CRC Press.
  • Martínez-Uribe, L. (2022) La sociología a través de sus publicaciones en revista de impacto mediante el uso de Big Data. Empiria: Revista de Metodología de Ciencias Sociales, 53, 53-88. https://doi.org/10.5944/empiria.53.2022.32612
  • McLean, K. C., Boggs, S., Haraldsson, K., Lowe, A., Fordham, C., Byers, S., & Syed, M. (2020). Personal Identity Development in Cultural Context: The Socialization of Master Narratives about the Gendered Life Course. International Journal of Behavioral Development, 44(2), 116-126. https://doi.org/10.1177/0165025419854150
  • Miura, H. (2011). Stata graph library for network analysis. Stata Journal 12: 94–129. https://doi.org/10.1177/1536867X1201200107
  • Pearson, K. (1896). Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia. Philosophical Transactions of the Royal Society Ser. A 187: 253–318. https://doi.org/10.1098/rsta.1900.0022
  • Rossel, Y. (2012). lavaan: An R Package for Structural Equation Model. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
  • Ruiz-Roso, M. B. et al. (2020). Covid-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients, 12(8), 2327. https://doi.org/10.3390/nu12082327
  • Schmank, C. J., Goring, S. A., Kovacs, K., & Conway, A. R. (2019). Psychometric Network Analysis of the Hungarian WAIS. Journal of Intelligence, 7(3), 21. https://doi.org/10.3390/jintelligence7030021
  • Scott, J. (2011). Social Network Analysis: Developments, Advances, and Prospects. Social Network Analysis and Mining, 1, 21-26.
  • Sebastian-Valles, F. et al. (2022). Impact of Change in Body Composition During Follow-up on the Survival of Gep-Net. Cancers, 14(21), 5189. https://doi.org/10.3390/cancers14215189
  • Serrate-Gonzalez, S., Sanchez-Rojo, A., Andrade-Silva, L. E., & Muñoz-Rodriguez, J. M. (2023). Onlife Identity: The Question of Gender and Age in Teenagers' Online Behaviour. Comunicar: Media Education Research Journal, 31(75), 9-19. https://doi.org/10.3916/C75-2023-01
  • Spearman, C. E. (1904). The Proof and Measurement of Association Between Two Things. American Journal of Psychology 15: 72–101. https://doi.org/10.2307/1422689
  • Super, D. E. (1990). A Life-Span, Life-Space Approach to Career Development. Journal of Vocational Behavior, 16(3), 282-298. https://doi.org/10.1016/0001-8791(80)90056-1
  • Tajfel, H., & Turner, J. C. (1886). The Social Identity Theory of Intergroup Behavior. Political Psychology (pp. 276-293). Psychology Press. https://doi.org/10.1177/053901847401300204
  • Tukey, J. W. (1977). Exploratory Data Analysis (Vol. 2, pp. 131-160). Reading, MA: Addison-wesley.
  • Ulitzsch, E., Khanna, S., Rhemtulla, M., & Domingue, B. W. (2023). A Graph Theory Based Similarity Metric Enables Comparison of Subpopulation Psychometric Networks. Psychological Methods. https://doi.org/10.1037/met0000625
  • Upton, G. J. G. (2000). Cobweb Diagrams for Multi-Way Contingency Tables. Journal of the Royal Statisctical Society, 49(1), 79-85. https://doi.org/10.1111/1467-9884.00221
  • Van Elk, M. et al. (2017). Why are Protestants more Prosocial than Catholics? A Comparative Study among Orthodox Dutch Believers. The International Journal for the Psychology of Religion, 27(1, 65-81). https://doi.org/10.1080/10508619.2017.1245023
  • Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
  • Winer, B., Donald R. Brown, and Kenneth M. Michels (1991). Statistical Principles in Experimental Design. McGraw-Hill.
  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT press.
  • Zazo, Á. F. et al. (2023). Análisis reticular de las relaciones de colaboración de las empresas de desechos tecnológicos de Panamá. Scire: Representación y Organización del Conocimiento, 29(2), 51-63. https://doi.org/10.54886/scire.v29i2.4921