Enriching Earth observation datasets through semantics for climate change applications: The EIFFEL ontology
- Molina, Benjamin 2
- Palau, Carlos E. 2
- Calvo-Gallego, Jaime 1
-
1
Universidad de Salamanca
info
-
2
Universidad Politécnica de Valencia
info
ISSN: 2732-5121
Année de publication: 2024
Volumen: 4
Pages: 133
Type: Article
D'autres publications dans: Open Research Europe
Résumé
Earth Observation (EO) datasets have become vital for decision support applications, particularly from open satellite portals that provide extensive historical datasets. These datasets can be integrated with in-situ data to power artificial intelligence mechanisms for accurate forecasting and trend analysis. However, researchers and data scientists face challenges in finding appropriate EO datasets due to inconsistent metadata structures and varied keyword descriptions. This misalignment hinders the discoverability and usability of EO data.
Information sur le financement
Financeurs
-
Horizon 2020 Framework Programme
- 101003518
-
Agencia Estatal de Investigacion
- PID2021-126483OB-I00
-
Universidad de Salamanca Research Program
- PIC2-2021-02
Références bibliographiques
- (2022), Tech rep., 10.2878/94903
- (2022)
- (2022)
- R Shibasaki, (2009), Tech rep.
- (2022)
- (2022)
- B Molina
- (2022)
- (2021)
- (2022)
- (2022)
- P Patel-Schneider, (2014), pp. 261-276, 10.1007/978-3-319-11964-9_17
- A Whitcraft, (2019), Remote Sens Environ., 235, 10.1016/j.rse.2019.111470
- E Gerasopoulos, (2022), Environ Sci Policy., 132, pp. 296-307, 10.1016/j.envsci.2022.02.033
- N Noy, (2001), Tech rep.
- M Grüninger, (1995)
- (2022)
- A Kavvada, (2020), Remote Sens Environ., 247, 10.1016/j.rse.2020.111930
- B Molina, (2022)