Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies

  1. Khan, Aqib Hassan Ali 1
  2. Barros, Rocío 1
  1. 1 Universidad de Burgos
    info

    Universidad de Burgos

    Burgos, España

    ROR https://ror.org/049da5t36

Journal:
Hydrobiology

ISSN: 2673-9917

Year of publication: 2023

Volume: 2

Issue: 2

Pages: 395-409

Type: Article

DOI: 10.3390/HYDROBIOLOGY2020026 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Hydrobiology

Abstract

The presence of pharmaceuticals in the aquatic environment presents a challenge to modern science. The most significant impact this can induce is the emergence of antibiotic resistance, which can lead to a global health emergency. It is important to note that the impact of pharmaceuticals in the aquatic environment is not limited to antibiotic resistance. Pharmaceuticals can also affect the behaviour and reproductive systems of aquatic organisms, with cascading effects on entire ecosystems. Numerous studies have reported the emergence of pharmaceuticals due to the uncontrolled disposal of polluted domestic, agricultural, and industrial wastewater in water bodies. This work discusses the potential of pharmaceuticals that on one hand are highly important for mankind, yet their non-judicious usage and disposal induce equally intriguing and problematic conditions to the health of aquatic systems. Pathways through which pharmaceutics can make their way into water bodies are discussed. Furthermore, the risk imposed by pharmaceuticals on aquatic life is also elaborated. The possible and pragmatic remediation methods through which pharmaceutical products can be treated are also discussed. Emphasis is placed on the potential of phytoremediation and advanced oxidative process, and the factors affecting the efficacy of these remediation methods are discussed.

Bibliographic References

  • Ferreira, (2023), Hydrobiology, 2, pp. 162, 10.3390/hydrobiology2010011
  • Bergami, (2023), Mar. Pollut. Bull., 186, pp. 114353, 10.1016/j.marpolbul.2022.114353
  • Li, (2023), Environ. Res., 227, pp. 115709, 10.1016/j.envres.2023.115709
  • Hawash, (2023), J. Water Process Eng., 52, pp. 103490, 10.1016/j.jwpe.2023.103490
  • Kock, (2023), Sci. Total Environ., 878, pp. 162939, 10.1016/j.scitotenv.2023.162939
  • Cui, (2018), Environ. Sci. Pollut. Res., 25, pp. 19393, 10.1007/s11356-018-2124-x
  • Eissa, (2022), Sci. Total Environ., 828, pp. 154303, 10.1016/j.scitotenv.2022.154303
  • Lichtfouse, (2022), Environ. Chem. Lett., 20, pp. 2311, 10.1007/s10311-022-01447-4
  • Carrizo, (2022), Chemosphere, 309, pp. 136769, 10.1016/j.chemosphere.2022.136769
  • Lawler, (2021), Anal. Methods, 13, pp. 575, 10.1039/D0AY02098B
  • Puri, (2023), J. Environ. Manag., 332, pp. 117344, 10.1016/j.jenvman.2023.117344
  • Rathi, (2021), J. Hazard. Mater., 409, pp. 124413, 10.1016/j.jhazmat.2020.124413
  • Almazrouei, (2023), Emerg. Contam., 9, pp. 100210, 10.1016/j.emcon.2023.100210
  • Omuferen, (2022), Environ. Monit. Assess., 194, pp. 306, 10.1007/s10661-022-09846-4
  • Patel, (2019), Chem. Rev., 119, pp. 3510, 10.1021/acs.chemrev.8b00299
  • Abdullah, (2021), J. Water Process. Eng., 43, pp. 102214, 10.1016/j.jwpe.2021.102214
  • Xie, (2017), Environ. Pollut., 222, pp. 356, 10.1016/j.envpol.2016.12.026
  • Chen, (2016), Sci. Total Environ., 571, pp. 974, 10.1016/j.scitotenv.2016.07.085
  • Kumar, (2023), J. Water Process. Eng., 53, pp. 103649, 10.1016/j.jwpe.2023.103649
  • Tijani, (2013), Water Air Soil Pollut., 224, pp. 1770, 10.1007/s11270-013-1770-3
  • Rathi, (2021), Sci. Total Environ., 797, pp. 149134, 10.1016/j.scitotenv.2021.149134
  • MacKeown, (2022), Anal. Bioanal. Chem., 414, pp. 1963, 10.1007/s00216-021-03832-4
  • Wang, (2020), J. Chromatogr. A, 1623, pp. 461171, 10.1016/j.chroma.2020.461171
  • Praveena, (2019), Ecotoxicol. Environ. Saf., 180, pp. 549, 10.1016/j.ecoenv.2019.05.051
  • Han, (2006), Environ. Toxicol. Chem., 25, pp. 265, 10.1897/05-193R.1
  • (2021), Environ. Toxicol. Pharmacol., 88, pp. 103756, 10.1016/j.etap.2021.103756
  • Fajardo, (2021), Chemosphere, 274, pp. 129704, 10.1016/j.chemosphere.2021.129704
  • Nobre, (2022), Mar. Pollut. Bull., 177, pp. 113469, 10.1016/j.marpolbul.2022.113469
  • Ohoro, C.R., Adeniji, A.O., Okoh, A.I., and Okoh, O.O. (2019). Distribution and chemical analysis of pharmaceuticals and personal care products (ppcps) in the environmental systems: A review. Int. J. Environ. Res. Public Health, 16.
  • Cao, (2022), Environ. Pollut., 311, pp. 119979, 10.1016/j.envpol.2022.119979
  • Riva, (2015), J. Pharm. Biomed. Anal., 106, pp. 71, 10.1016/j.jpba.2014.10.003
  • Coecke, (2013), Toxicol. Vitro, 27, pp. 1570, 10.1016/j.tiv.2012.06.012
  • Ahuekwe, (2022), Sci. Afr., 17, pp. e01288
  • Gunnarsson, (2019), Environ. Int., 129, pp. 320, 10.1016/j.envint.2019.04.075
  • Liu, (2020), Environ. Int., 136, pp. 105454, 10.1016/j.envint.2019.105454
  • Gwenzi, (2018), Sci. Total Environ., 619–620, pp. 1493, 10.1016/j.scitotenv.2017.11.121
  • Tambosi, (2010), Desalination, 261, pp. 148, 10.1016/j.desal.2010.05.014
  • Almeida, (2020), Environ. Pollut., 263, pp. 114442, 10.1016/j.envpol.2020.114442
  • Foster, (2010), Environ. Toxicol. Chem., 29, pp. 2845, 10.1002/etc.345
  • Leonard, (2022), Curr. Opin. Microbiol., 65, pp. 40, 10.1016/j.mib.2021.10.004
  • Bereketoglu, (2020), Aquat. Toxicol., 223, pp. 105476, 10.1016/j.aquatox.2020.105476
  • Nagda, (2022), J. Basic Microbiol., 62, pp. 395, 10.1002/jobm.202100225
  • Bussemaker, (2021), Ultrason. Sonochem., 76, pp. 105656, 10.1016/j.ultsonch.2021.105656
  • Wang, (2020), Sci. Total Environ., 704, pp. 135249, 10.1016/j.scitotenv.2019.135249
  • Fortunato, A., and Mba, M. (2022). A peptide-based hydrogel for adsorption of dyes and pharmaceuticals in water remediation. Gels, 8.
  • Barhoum, A., García-Betancourt, M.L., Jeevanandam, J., Hussien, E.A., Mekkawy, S.A., Mostafa, M., Omran, M.M., Abdalla, M.S., and Bechelany, M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials, 12.
  • Khan, (2019), Sci. Rep., 9, pp. 4138, 10.1038/s41598-019-40540-7
  • Raza, (2019), Soil Sediment. Contam., 28, pp. 716, 10.1080/15320383.2019.1657380
  • Rumbo, (2022), Chemosphere, 307, pp. 135638, 10.1016/j.chemosphere.2022.135638
  • Javed, S., Mirza, C.R., Khan, A.H.A., Khalifa, W., Achour, B., Barros, R., Yousaf, S., Butt, T.A., and Iqbal, M. (2022). Limited Phosphorous Supply Improved Lipid Content of Chlorella vulgaris That Increased Phenol and 2-Chlorophenol Adsorption from Contaminated Water with Acid Treatment. Processes, 10.
  • Kochi, L.Y., Freitas, P.L., Maranho, L.T., Juneau, P., and Gomes, M.P. (2020). Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability, 12.
  • Hussain, (2021), Environ. Sci. Pollut. Res., 29, pp. 9097, 10.1007/s11356-021-16149-7
  • Hussain, (2018), Environ. Exp. Bot., 153, pp. 80, 10.1016/j.envexpbot.2018.05.012
  • Iqbal, (2020), Environ. Sci. Pollut. Res., 27, pp. 24671, 10.1007/s11356-019-06181-z
  • Khan, (2021), J. Plant. Growth Regul., 40, pp. 240, 10.1007/s00344-020-10094-4
  • Khan, (2021), Environ. Res., 195, pp. 110780, 10.1016/j.envres.2021.110780
  • Saleem, (2023), Biol. Bull. Russ. Acad. Sci., 50, pp. 390, 10.1134/S1062359022602245
  • Nguyen, (2019), Environ. Sci. Pollut. Res., 26, pp. 21109, 10.1007/s11356-019-05320-w
  • Wu, (2023), Nat. Rev. Earth Environ., 4, pp. 218, 10.1038/s43017-023-00395-z
  • Khan, (2023), J. Environ. Manag., 326, pp. 116700, 10.1016/j.jenvman.2022.116700
  • Ekperusi, (2019), Chemosphere, 223, pp. 285, 10.1016/j.chemosphere.2019.02.025
  • Vymazal, (2011), Environ. Sci. Technol., 45, pp. 61, 10.1021/es101403q
  • Brunhoferova, (2021), Chemosphere, 281, pp. 130980, 10.1016/j.chemosphere.2021.130980
  • Ilyas, (2020), Environ. Sci. Pollut. Res., 27, pp. 14342, 10.1007/s11356-020-08165-w
  • Atalla, (2019), J. Chem. Eng., 373, pp. 458, 10.1016/j.cej.2019.05.064
  • Silori, (2022), J. Environ. Manag., 320, pp. 115703, 10.1016/j.jenvman.2022.115703
  • Adeola, (2022), Chem. Afr., 5, pp. 481, 10.1007/s42250-022-00334-3
  • Couto, (2022), Chemosphere, 302, pp. 134808, 10.1016/j.chemosphere.2022.134808
  • Carpinteiro, (2017), Water Res., 120, pp. 280, 10.1016/j.watres.2017.04.063
  • Stando, K., Czyż, A., Gajda, M., Felis, E., and Bajkacz, S. (2022). Study of the Phytoextraction and phytodegradation of sulfamethoxazole and trimethoprim from water by Limnobium laevigatum. Int. J. Environ. Res. Public Health, 19.
  • Dordio, (2009), Bioresour. Technol., 100, pp. 1156, 10.1016/j.biortech.2008.08.034
  • Zhang, (2012), Chemosphere, 87, pp. 273, 10.1016/j.chemosphere.2011.12.067
  • Osama, (2022), J. Water Process. Eng., 50, pp. 103308, 10.1016/j.jwpe.2022.103308
  • Dolatabadi, (2019), Water Sci. Technol., 80, pp. 685, 10.2166/wst.2019.312
  • Talwar, (2021), Process Saf. Environ. Prot., 146, pp. 564, 10.1016/j.psep.2020.11.029
  • Wang, (2021), J. Hazard. Mater., 416, pp. 125893, 10.1016/j.jhazmat.2021.125893
  • Derco, (2021), Environ. Technol., 43, pp. 2319
  • Bilal, (2022), Int. J. Hydrogen Energy, 47, pp. 19555, 10.1016/j.ijhydene.2021.11.018
  • Wang, (2023), Water. Res., 233, pp. 119744, 10.1016/j.watres.2023.119744
  • (2019), Water. Res., 154, pp. 349, 10.1016/j.watres.2019.01.045
  • Brillas, (2023), J. Environ. Chem. Eng., 11, pp. 109635, 10.1016/j.jece.2023.109635
  • Gao, (2022), Ultrason. Sonochem., 82, pp. 105906, 10.1016/j.ultsonch.2021.105906
  • Leo, (2023), Sep. Purif. Technol., 307, pp. 122818, 10.1016/j.seppur.2022.122818
  • Kudlek, E., Dudziak, M., and Bohdziewicz, J. (2016). Influence of inorganic ions and organic substances on the degradation of pharmaceutical compound in water matrix. Water, 8.
  • Aftab, (2021), Int. J. Environ. Sci. Technol., 18, pp. 2325, 10.1007/s13762-020-02981-w
  • Mushtaq, (2020), Environ. Sci. Pollut. Res., 27, pp. 39807, 10.1007/s11356-020-08839-5
  • Yousaf, (2022), Chemosphere, 286, pp. 131782, 10.1016/j.chemosphere.2021.131782