Paulino José
García Nieto
Publicaciones en las que colabora con Paulino José García Nieto (12)
2024
-
Predicting the critical superconducting temperature using the random forest, MLP neural network, M5 model tree and multivariate linear regression
Alexandria Engineering Journal, Vol. 86, pp. 144-156
2023
2021
-
A new hybrid model to foretell thermal power efficiency from energy performance certificates at residential dwellings applying a Gaussian process regression
Neural Computing and Applications, Vol. 33, Núm. 12, pp. 6627-6640
-
Modelling energy performance using a new hybrid DE/MARS–based approach for fossil-fuel thermal power stations
Environmental Science and Pollution Research, Vol. 28, Núm. 4, pp. 4417-4429
2020
-
A hybrid predictive approach for chromium layer thickness in the hard chromium plating process based on the differential evolution/gradient boosted regression tree methodology
Mathematics, Vol. 8, Núm. 6
-
Chrome Layer Thickness Modelling in a Hard Chromium Plating Process Using a Hybrid PSO/ RBF–SVM–Based Model
IJIMAI, Vol. 6, Núm. 4, pp. 39-48
-
Predicting benzene concentration using machine learning and time series algorithms
Mathematics, Vol. 8, Núm. 12, pp. 1-21
2019
-
Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques
Neural Computing and Applications, Vol. 31, Núm. 12, pp. 8823-8836
2018
-
Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain)
Environmental Modeling and Assessment, Vol. 23, Núm. 3, pp. 229-247
2016
-
A new predictive model based on the abc optimized multivariate adaptive regression splines approach for predicting the remaining useful life in aircraft engines
Energies, Vol. 9, Núm. 6
-
Hard-rock stability analysis for span design in entry-type excavations with learning classifiers
Materials, Vol. 9, Núm. 7
-
Hybrid ABC optimized MARS-based modeling of the milling tool wear from milling run experimental data
Materials, Vol. 9, Núm. 2