A transform involving Chebyshev polynomials and its inversion formula
- Ciaurri, O. 1
- Navas, L.M. 2
- Varona, J.L. 1
-
1
Universidad de La Rioja
info
-
2
Universidad de Salamanca
info
ISSN: 0022-247X
Año de publicación: 2006
Volumen: 323
Número: 1
Páginas: 57-62
Tipo: Artículo
Otras publicaciones en: Journal of Mathematical Analysis and Applications
Resumen
We define a functional analytic transform involving the Chebyshev polynomials Tn (x), with an inversion formula in which the Möbius function μ (n) appears. If s ∈ C with Re (s) > 1, then given a bounded function from [- 1, 1] into C, or from C into itself, the following inversion formula holds:g (x) = underover(∑, n = 1, ∞) frac(1, ns) f (Tn (x)) if and only iff (x) = underover(∑, n = 1, ∞) frac(μ (n), ns) g (Tn (x)) . Some other similar results are given. © 2005 Elsevier Inc. All rights reserved.