Möbius inversion formulas for flows of arithmetic semigroup
- Benito, M. 1
- Navas, L.M. 2
- Varona, J.L. 3
- 1 Instituto Sagasta, Glorieta del Doctor Zubía s/n, 26003 Logroño, Spain
-
2
Universidad de Salamanca
info
-
3
Universidad de La Rioja
info
ISSN: 0022-314X
Ano de publicación: 2008
Volume: 128
Número: 2
Páxinas: 390-412
Tipo: Artigo
Outras publicacións en: Journal of Number Theory
Resumo
We define a convolution-like operator which transforms functions on a space X via functions on an arithmetical semigroup S, when there is an action or flow of S on X. This operator includes the well-known classical Möbius transforms and associated inversion formulas as special cases. It is defined in a sufficiently general context so as to emphasize the universal and functorial aspects of arithmetical Möbius inversion. We give general analytic conditions guaranteeing the existence of the transform and the validity of the corresponding inversion formulas, in terms of operators on certain function spaces. A number of examples are studied that illustrate the advantages of the convolutional point of view for obtaining new inversion formulas. © 2007 Elsevier Inc. All rights reserved.