La estructura de las actitudes hacia las personas con discapacidadmodelos de redes y modelos estructurales
- RODRÍGUEZ-MEDINA, Jairo 1
- ARIAS, Víctor 2
- JIMÉNEZ-RUIZ, María 1
- RODRÍGUEZ-NAVARRO, Henar 1
- RUBIA-AVI, Bartolomé 1
- ARIAS, Benito 1
-
1
Universidad de Valladolid
info
-
2
Universidad de Salamanca
info
ISSN: 2530-0350
Año de publicación: 2018
Volumen: 49
Número: 1
Páginas: 69-87
Tipo: Artículo
Otras publicaciones en: Siglo Cero: Revista Española sobre Discapacidad Intelectual
Resumen
El estudio pretende examinar la estructura de las actitudes hacia las personas con discapacidad de los profesionales del tercer sector, comparando para ello diferentes métodos exploratorios y confirmatorios. Se propone un enfoque novedoso desde el análisis de redes denominado análisis exploratorio de grafos en el que los nodos representan las actitudes y los vínculos relacionales representan las relaciones estadísticas estimadas. Se aplicó la Escala de actitudes hacia las personas con discapacidad, participaron 976 profesionales con un rango de edad entre 18 y 65 años. Se compararon los resultados del modelo de tres factores obtenido mediante análisis factorial confirmatorio con la estructura de la red de actitudes. Se observó una alta correspondencia entre los ítems que conforman el primer factor del modelo y la agrupación de los nodos que los representan en la red. Además, los nodos con menor centralidad correspondieron con los indicadores menos fiables en el modelo factorial. En el gráfico de redes los ítems parecen agruparse aproximadamente en tres clústeres; sin embargo también se observan nexos fuertes entre indicadores pertenecientes a distintos grupos, lo que podría ayudar a explicar la evidencia empírica a favor de un factor general de actitudes.
Información de financiación
Se comparó el ajuste de las diferentes estructuras obtenidas a través del análisis ex-ploratorio de grafos y paralelo optimizado mediante análisis factorial confirmatorio. Ambos modelos se estimaron mediante mínimos cuadrados ponderados “WLSMV”. Se contrastó la bondad de ajuste mediante los índices de ajuste comparativo (CFI) y Tucker-Lewis (TLI) y la raíz del error cuadrático medio de aproximación (RMSEA). Se considera que índices CFI y TLI superiores a .90 indican grados de ajuste acepta-bles y por encima de .95 buenos (Hu y Bentler, 1999). En el caso del RMSEA, valores iguales o inferiores a .05 se interpretan como buenos e inferiores a .08 como acepta-bles (Browne y Cudeck, 1992; Hu y Bentler, 1999). Se siguieron las recomendaciones de Chen (2007) y Cheung y Rensvold (2002), según las cuales incrementos menores a .010 en CFI y TLI y decrementos menores a .015 en RMSEA sugieren que no hay cambios relevantes en el ajuste de un modelo respecto del siguiente más restrictivo, para establecer la relevancia de las diferencias de ajuste entre modelos. Los diferentes análisis se realizaron mediante los programas R, versión 3.4.1 (R Core Team, 2017), y FACTOR, versión 10.5.03 (Lorenzo-Seva y Ferrando, 2013).Financiadores
Referencias bibliográficas
- Arias, B. (1993). Evaluación de actitudes hacia la integración de alumnos con necesidades educativas especiales (Tesis doctoral no publicada). Salamanca: Universidad de Salamanca.
- Arias, B., Verdugo, M. Á., y Rubio, V. J. (1995). Evaluación de la actividad Modelo Local de Valladolid. Madrid: Ministerio de Educación y Ciencia.
- Arias, V., Arias, B., Verdugo, M. Á., Rubia-Avi, M., y Jenaro, C. (2016). Evaluación de actitudes de los profesionales hacia las personas con discapacidad. Siglo Cero. Revista Española Sobre Discapacidad Intelectual, 47(2), 7-41. doi:10.14201/scero2016472741
- Boo, L. S. H., y Nie, Y. (2017). Attitude towards persons with intellectual disability scale: Further development. Current Psychology. Advance online publication. doi:10.1007/s12144-017-9560-5.
- Borsboom, D., y Cramer, A. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91-121. doi:10.1146/annurev-clinpsy-050212-185608.
- Borsboom, D., Fried, E., Epskamp, S., Waldorp, L., Van Borkulo, C., Van Der Maas, H., y Cramer, A. (2017). False alarm? A comprehensive reanalysis of “Evidence that psychopathology symptom networks have limited replicability” by Forbes, Wright, Markon, y Krueger. Journal of Abnormal Psychology, 126(7), 989-999. doi:10.1037/abn0000306.
- Brooks, S. P. (2002). Discussion on the paper by Spiegelhalter, Best, Carlin, and van de Linde (2002). Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64(3), 616-618.
- Browne, M. W. y Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods y Research, 21(2), 230-258. doi:10.1177/0049124192021002005.
- Carlin, B. P. y Louis, T. A. (2001). Bayes and Empirical Bayes Methods for Data Analysis Essays on Item Response Theory. Second edition. New York: Chapman y Hall.
- Cattell R. B. (1966). Handbook of Multivariate Experimental Psychology. Chicago: Springer.
- Chen, F. F. (2007). Sensitivity of goodness of fit indices to lack of measurement invariance. Structural Equation Modeling, 14(3), 464-504. doi:10.1080/10705510701301834.
- Cheung, G. W. y Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233-255. doi:10.1207/S15328007SEM0902_5.
- Dalege, J., Borsboom, D., van Harreveld, F., van den Berg, H., Conner, M., y van der Maas, H. L. J. (2016). Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model. Psychological Review, 123(1), 2–22. doi:10.1037/a0039802.
- Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1–26.
- Epskamp, S., Borsboom, D., y Fried, E. I. (2017). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods. Advance online publication. doi:10.3758/s13428-017-0862-1.
- Epskamp, S., Kruis, J., y Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS ONE, 12(6). doi:10.1371/journal.pone.0179891
- Epskamp, S., Maris, G., Waldorp, L. J., y Borsboom. D. (2016). Network psychometrics. En Irwing, P., Hughes, D., y Booth, T. (Eds.), Handbook of Psychometrics. New York: Wiley.
- Epskamp, S., Rhemtulla, M., y Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika. Advance online publication. doi:10.1007/s11336-017-9557-x.
- Findler L., Vilchinsky N. y Werner S. (2007) The Multidimensional Attitudes Scale toward persons with disabilities (MAS): construction and validation. Rehabilitation Counseling Bulletin, 50(3), 166–76. doi:10.1177/00343552070500030401.
- Fonseca-Pedrero, E. (2017). Análisis de redes: ¿una nueva forma de comprender la psicopatología? Revista de Psiquiatría y Salud Mental, 10(4), 206–215. doi:10.1016/j.rpsm.2017.06.004.
- Forbes, M. K., Wright, A. G. C., Markon, K. E., y Krueger, R. F. (2017). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology, 126(7), 969–988. doi:10.1037/abn0000276.
- Fried, E. I., Epskamp, S., Nesse, R. M., Tuerlinckx, F., y Borsboom, D. (2016). What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314–320. doi:10.1016/j.jad.2015.09.005. Golino, H. F., y Demetriou, A. (2017). Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. Intelligence, 62, 54–70. doi:10.1016/j.intell.2017.02.007
- Golino, H. F., y Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), 1–38. doi:10.1371/journal.pone.0174035.
- Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19(2), 149–161. Horn J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–85.
- Hu, L. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. doi:10.1080/10705519909540118.
- Keith, T. Z., Caemmerer, J.M., y Reynolds, M. R. (2016). Comparison of methods for factor extraction for cognitive test-like data: Which overfactor, which underfactor? Intelligence, 54, 37–54. doi:10.1016/j.intell.2015.11.003.
- Lorenzo-Seva, U., y Ferrando, P. J. (2013). FACTOR 9.2 A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models. Applied Psychological Measurement, 37(6), 497-498.
- Morin, D., Crocker, A. G., Beaulieu-Bergeron, R., y Caron, J. (2013). Validation of the attitudes toward intellectual disability - ATTID questionnaire. Journal of Intellectual Disability Research, 57(3), 268–278. doi:10.1111/j.1365-2788.2012.01559.
- Power, M. J., y Green, A. M. (2010). The Attitudes to Disability Scale (ADS): Development and psychometric properties. Journal of Intellectual Disability Research, 54(9), 860–874. doi:10.1111/j.1365-2788.2010.01317.
- Pelleboer-Gunnink, H. A., Van Oorsouw, W. M. W. J., Van Weeghel, J., y Embregts, P. J. C. M. (2017). Mainstream health professionals’ stigmatising attitudes towards people with intellectual disabilities: a systematic review. Journal of Intellectual Disability Research, 61(5), 411–434. doi:10.1111/jir.12353
- R Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.Rproject.org/.
- Scior, K. (2011). Public awareness, attitudes and beliefs regarding intellectual disability: A systematic review. Research in Developmental Disabilities, 32(6), 2164–2182. doi:10.1016/j.ridd.2011.07.005
- Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics,6(2), 461–464.
- Symons, A. B., Fish, R., McGuigan, D., Fox, J., y Akl, E. A. (2012). Development of an instrument to measure medical students’ attitudes toward people with disabilities. Intellectual and Developmental Disabilities, 50(3), 251–260. doi:10.1352/1934-9556-50.3.251.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 58(1), 267–288.
- Timmerman, M. E., y Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-220. doi:10.1037/a0023353.
- Van Borkulo, C. D., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., y Waldorp, L. J. (2016). Comparing network structures on three aspects: A permutation test. Advance online publication. doi:10.13140/RG.2.2.29455.38569.
- Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321–7.
- Verdugo, M. Á., Arias, B., y Jenaro, C. (1994). Actitudes hacia las personas con minusvalía. Madrid: Instituto Nacional de Servicios Sociales.
- Verdugo, M. Á., Jenaro, C., y Arias, B. (1995). Actitudes sociales y profesionales hacia las personas con discapacidad: estrategias de evaluación e intervención. En M. Á. Verdugo (Dir.), Personas con discapacidad: perspectivas psicopedagógicas y rehabilitadoras (pp. 79- 143). México: Siglo XXI.
- Wasserman, S., y Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.