El papel del profesorado y el entorno de aprendizaje en el rendimiento de los estudiantes costarricensesun análisis a partir de PISA

  1. Gimenez, Gregorio 1
  2. Barrado, Beatriz 1
  3. Arias, Rafael 2
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  2. 2 Universidad Nacional de Costa Rica
    info

    Universidad Nacional de Costa Rica

    Heredia, Costa Rica

    ROR https://ror.org/01t466c14

Revista:
Revista complutense de educación

ISSN: 1130-2496 1988-2793

Año de publicación: 2019

Volumen: 30

Número: 4

Páginas: 1127-1145

Tipo: Artículo

DOI: 10.5209/RCED.60189 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista complutense de educación

Objetivos de desarrollo sostenible

Resumen

The role of teachers and the learning environment in academic achievement of Costa Rican students: An analysis from PISAA pesar de que la literatura ha señalado que la calidad del profesorado y el ambiente escolar son factores clave en el rendimiento académico, los estudios que cuantifican empíricamente en qué medida contribuyen al desempeño estudiantil en los países latinoamericanos son escasos. En este artículo, utilizamos datos de PISA-Costa Rica y la técnica de descomposición Shapley-Shorrocks para cuantificar qué porcentaje de la variabilidad de los resultados escolares puede ser explicada por el profesorado y el entorno de aprendizaje. Los resultados muestran que la mayor parte de las diferencias en notas se debe al esfuerzo de cada estudiante (parte no explicada por la función de producción educativa). Del resto de factores, las características de la escuela y del profesor explican más variabilidad en rendimiento (36% para el promedio de Matemáticas, Lectura y Ciencias) que el efecto conjunto de las circunstancias individuales y familiares (12,5%). Dentro de los factores de escuela, dos elementos tendrían especial relevancia. Por un lado, el comportamiento de los alumnos, destacando los problemas de absentismo e impuntualidad. Por otro, el nivel de autonomía del profesorado y la dirección de la escuela en el diseño de los planes de estudio y las evaluaciones.

Referencias bibliográficas

  • Amador, M., Díaz, Y., Murillo, A., Rodríguez, M., Rojas, E. y Vargas, L. (2013). Evaluación del desempeño del personal docente en los centros educativos de educación secundaria pública de las direcciones regionales de San José. San José, Costa Rica: Ministerio de Educación Pública. Documento descargable en http://www.mep.go.cr/educatico/evaluacion-desempeno-personal-docente.
  • Barber, M. y Mourshed, M. (2007). How the world's best performing school systems come out on top. McKinsey & Company.
  • Berliner, D., y Biddle, B. (1995). Tempus educare. En P. Peterson & H. Walberg (eds.), Research on teaching: Concepts, findings, and implications (769-818). Berkeley, CA: McCutchan.
  • Boyd, D., Goldhaber, D., Lankford, H., y Wyckoff, J. (2007). The effect of certification y preparation on teacher quality. Future of Children 17(1), 45- 68.
  • Castillo, M., Chavarría, J., y García, M. (2014). Grado de dificultad del aprendizaje de los contenidos matemáticos en la Educación Secundaria de Costa Rica y su abordaje didáctico, desde la perspectiva de docentes y estudiantes. San José, Costa Rica: Ponencia preparada para el Quinto Informe Estado de la Educación.
  • Castro, G., C., Giménez, G., y Ximénez-de-Embún, D. P. (2017). Educational Inequalities in Latin America, 2012 PISA: Causes of Differences in School Performance between Public and Private Schools Desigualdades educativas en América Latina, PISA 2012: causas de las diferencias en desempeño escolar entre los. Revista de Educación, 376, 32-59
  • Castro, G., Giménez, G., y Pérez Ximénez-de-Embún, D. (2018). Estimación de los factores condicionantes de la adquisición de competencias académicas en América Latina en presencia de endogeneidad. Revista CEPAL.
  • Clark, D. (2009). The Performance and Competitive Effects of School Autonomy. Journal of Political Economy 117 (4), 745-832.
  • Clotfelter, C. T., Ladd, H.F., y Vigdor, J. (2006). Teacher-student matching and the assessment of teacher effectiveness. Journal of Human Resources 41 (4), 778-820.
  • Cornelius-White, J. (2007). Learner-Centered Teacher-Student Relationships Are Effective: A Meta-Analysis. Review of Educational Research 77 (1), 113–143.
  • Durrant, G. B. (2009). Imputation Methods for Handling Item-Nonresponse in Practice: Methodological Issues and Recent Debates. International Journal of Social Research Method, 12(4), 293-304.
  • Ehrenberg, R. G. (1994). Do School y Teacher Characteristics Matter? Evidence from High School y Beyond. Economics of Education Review 13(1), 1-17.
  • Ehrenberg, R. G. (1995). Did Teachers’ Verbal Ability y Race Matter in the 1960s? Coleman Revisited. Economics of Education Review 14 (1), 1– 21.
  • Fernández, A. (2013). Análisis de la resiliencia educativa de los estudiantes costarricenses con datos de la prueba de lectura de la evaluación PISA 2009. Revista de Ciencias Económicas 31 (2), 75-99.
  • Fernández, A. y Del Valle, R. (2013). Desigualdad educativa en Costa Rica: la brecha entre estudiantes de colegios públicos y privados. Análisis con los resultados de la evaluación internacional PISA. Revista CEPAL, (11), 37-57.
  • Ferreira, F., y Gignoux, J. (2014). The Measurement of Educational Inequality: Achievement and Opportunity. World Bank Economic Review 28(2), 210-246.
  • Freeman, R. B. y Viarengo, M. (2014). School and family effects on educational outcomes across countries. Economic Policy, 29 (79), 395-446.
  • Giménez, G., Martín-Oro, Á., y Sanaú, J. (2018). The effect of districts’ social development on student performance. Studies in Educational Evaluation, 58, 80-96.
  • Giménez, G.,y, y Castro Aristizábal, G. (2017). ¿ Por qué los estudiantes de colegios públicos y privados de Costa Rica obtienen distintos resultados académicos?. Perfiles latinoamericanos, 25(49), 195-223.
  • Goldhaber, D. y Anthony, E. (2007). Can teacher quality be effectively assessed? National board certification as a signal of effective teaching. Review of Economics y Statistics 89(1), 134-150.
  • Goldhaber, D. y Brewer, D. (1997). Why don't schools y teachers seem to matter? Assessing the impact of unoberservables on educational productivity. Journal of Human Resources 32, 505-523.
  • Goldhaber, O. y Brewer, D. (2000). Does teacher certification matter? High school teacher certification status y student achievement. Educational Evaluation and Policy Analysis 22(2), 129-145.
  • Goldhaber, O., Brewer, 0., y Yerson, D. (1999). A three-way error components analysis of educational productivity. Education Economics 7(3), 199-208.
  • Good, T., y Brophy, J. (2000). Looking in classrooms (8th ed.). New York: Longman.
  • Guthrie, J. T., Wigfield, A. y Klauda, S. L. (2012), Adolescents’ Engagement in Academic Literacy, Berntham Science Publishers, Shariah, United Arab Emirates.
  • Hanushek, E. A. (1986). The economics of schooling: Production y efficiency in public schools. Journal of Economic Literature 24 (3), 1141- 1177.
  • Hanushek, E. A. (2002). Publicly provided education. Working Paper 8799.National Bureau of Economic Research.
  • Hanushek, E. A., Link, S., y Woessmann, L. (2013). Does school autonomy make sense everywhere? Panel estimates from PISA. Journal of Development Economics, 104, 212-232.
  • Hattie, J. (2009). Visible Learning. Abingdon: Routledge.
  • Hattie, J., y Yerman, E. (2013). International Guide to Student Achievement: Educational Psychology. Hybook. Routledge.
  • Hipkins, R. (2012), “The engaging nature of teaching for competency development”, en S.L. Christenson, A.L. Reschly y C. Wylie (eds.), Hybook of Research on Student Engagement, Springer, New York, 441-456.
  • Huettner, Frank; Sunder, Marco. (2012). Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values. Electronic Journal of Statistics (6), 1239-1250.
  • Jacob, B. (2007). The challenges of staffing urban schools with effective teachers. Future of Children 17(1), 129-153.
  • Mander, A. y Clayton, D. (2007). Hotdeck: Stata module to impute missing values using the hotdeck method. Available from: http://econpapers.repec.org/software/bocbocode/s366901.htm.
  • Medina, F., y Galván, M. (2007). Imputación de datos: teoría y práctica. CEPAL. Serie estudios estadísticos y prospectivos No. 54. http://www.cepal.org/es/publicaciones/4755-imputacion-datos-teoria-practica.
  • Mena, P. J.. (2013). Evaluación del desempeño profesional de docentes de matemática. Santo Domingo, República Dominicana: I Congreso de Educación Matemática de América Central y de El Caribe.
  • Montero, E., Rojas, S. y Zamora, E. (2014). Costa Rica en las pruebas PISA 2012. Informe preparado para el Quinto Informe Estado de la Educación. San José, Costa Rica: Programa Estado de la Educación.
  • Montero, E., Rojas, S., Zamora, E. y Rodino, A. M. (2012). Costa Rica en las pruebas PISA 2009 de competencia lectora y alfabetización matemática. Informe preparado para el Cuarto Informe Estado de la Educación. San José, Costa Rica: Programa Estado de la Educación.
  • Pelayo, I., y Brewer, D. J. (2010). Teacher Quality in Education Production. En D. Brewer, y P. McEwan (Eds.), International Encyclopedia of Education (178-182). New York: Elsevier;
  • Poway (2002). Review of the literature on time and learning. Unified School district and Poway federation of teachers.
  • Rivkin, S. G., Hanushek, E. A., y Kain, J. F. (2005). Teachers, schools, y academic achievement. Econometrica 73(2), 417-458.
  • Rubin, D. B., y Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association 81, 366-374.
  • Sastre, M. y Trannoy A. (2002). Shapley Inequality Decomposition by Factor Components: Some Methodological Issues. Journal of Economics, (9), 51-89.
  • Scheerens, J., Hendriks, M., Luyten, H., Sleegers, P. y Glas, C. (2013). Productive time in education. A review of the effectiveness of teaching time at school, homework and extended time outside school hours. [Reporte para el Program Committee for Educational Research , que es parte del Dutch Foundation for Scientific Research.
  • Shorrocks, A. (1982). Inequality Decomposition by Factor Components. Econometrica. 50(1), 193-211.
  • Treviño, E. Valdés, H., Castro, M., Costilla, R., Pardo, C. y Donoso Rivas, F. (2010). Factores asociados al logro cognitivo de los estudiantes de América Latina y el Caribe. Santiago de Chile: Oficina Regional de Educación de la UNESCO para América Latina y el Caribe (OREALC/UNESCO Santiago) y Laboratorio Latinoamericano de Evaluación de la Calidad de la Educación – LLECE.
  • Wigfield, A., J. Cambria y J.S. Eccles (2012). Motivation in education. En R.M. Ryan (ed.), The Oxford Handbook of Motivation, Oxford University Press, New York, 463-473.