Grafos interactivos de regresión con modelos lineales generales

  1. Escobar Mercado, Modesto 1
  2. Calvo López, Cristina 1
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Redes: Revista hispana para el análisis de redes sociales

ISSN: 1579-0185

Año de publicación: 2025

Título del ejemplar: Organizaciones, cuidados e inclusión social

Volumen: 36

Número: 1

Páginas: 35-53

Tipo: Artículo

DOI: 10.5565/REV/REDES.1050 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Redes: Revista hispana para el análisis de redes sociales

Resumen

Este trabajo introduce una metodología innovadora en el análisis de datos dentro de la investigación social, destacando la aplicación de grafos y análisis de regresión en la representación gráfica de resultados estadísticos. La propuesta central se enfoca en el uso de gráficos reticulares para una interpretación más clara y accesible de las relaciones entre variables, tanto cuantitativas como cualitativas. Este enfoque se complementa con un análisis crítico sobre métodos tradicionales, especialmente en lo que respecta a la categoría base-contraste y la relevancia de márgenes y efectos marginales en los modelos estadísticos. Se presenta una metodología que no solo aborda la clarificación conceptual en el ámbito de la regresión estadística, sino que también propone formas visuales innovadoras para representar y analizar datos complejos.

Referencias bibliográficas

  • Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: Wiley.
  • Ai, C., & Norton, E. C. (2003). Interaction Terms in Logit and Probit Models. Economics Letters, 80(1), 123-129. https://doi.org/10.1016/S0165-1765(03)00032-6
  • Albarello, F., Crocetti, E., & Rubini, M. (2018). I and Us: A Longitudinal Study on the Interplay of Personal and Social Identity in Adolescence. Journal of Youth and Adolescence, 47, 689-702. https://doi.org/10.1007/s10964-017-0791-4
  • Bartus, T. (2005). Estimation of Marginal Effects using margeff. The Stata Journal, 5(3), 309-329. https://doi.org/10.1177/1536867X0500500303
  • Bishop, C. (2006). Pattern Recognition and Machine Learning (Vol. 2). Singapore, KYO: Springer Science+Business Media, LLC.
  • Bowling, A., See-Tai, S., Ebrahim, S., Gabriel, Z., & Solanki, P. (2005). Attributes of Age-Identity. Ageing & Society, 25(4), 479-500. https://doi.org/10.1017/S0144686X05003818
  • Brown, A., Kirpal, S., Rauner, F. (2007). Identities at Work. Vol. 5. Springer Science & Business Media. Dordrecht, Springer.
  • Caza, B. B., Vough, H., & Puranik, H. (2018). Identity Work in Organizations and Occupations: Definitions, Theories, and Pathways Forward. Journal of Organizational Behavior, 39(7), 889-910. https://doi.org/10.1002/job.2318
  • Christofides, N. (1975). Graph Theory: An Algorithmic Approach (Computer Science and Applied Mathematics). Academic Press, Inc.
  • Constantini, G., & Perugini, M. (2016). The Network of Conscientiousness. Journal of Research in Personality, 65(1), 68–88. https://doi.org/10.1016/j.jrp.2016.10.003
  • Croft, A., Schmader, T., Block, K., & Baron, A. S. (2014). The Second Shift Reflected in the Second Generation: Do Parents’ Gender Roles at Home Predict Children’s Aspirations?. Psychological Science, 25(7), 1418-1428. https://doi.org/10.1177/0956797614533968
  • Eagly, A. H., & Wood, W. (2012). Social Role Theory. Handbook of Theories of Social Psychology, 2, 458-476.
  • Easley, D. y J. Kleinberg (2010). Networks, Crowds and Markets. Cambridge: Cambridge University Press.
  • Erikson, E. H. (1980). Identity and the Life Cycle. WW Norton & company.
  • Escobar, M. (2015). Studying Coincidences with Network Analysis and Other Multivariate Tools. The Stata Journal, 15(4), 1118-1156. https://doi.org/10.1177/1536867X1501500410
  • Escobar, M. (2016). Ensayo sobre las coincidencias. En A. Almarcha, P. González, y L. Román (Eds.), Donde la Sociología te lleve. A Coruña: Universidad de A Coruña.
  • Escobar, M. E., Gil, E., & Calvo, C. (2022). Análisis de la dinámica, la estructura y el contenido de los mensajes de Twitter: violencia sexual en# Cuéntalo. Empiria: Revista de Metodología de Ciencias Sociales, (53), 89-119. https://doi.org/https://doi.org/10.5944/empiria.53.2022.32614
  • Escobar, M. y H. Román (2011). La presentación del yo en el ciberespacio. Un análisis de las autodefiniciones personales en blogs y redes sociales. Revista de Psicología Social, 26(2, 207-222. https://doi.org/10.1174/021347411795448947
  • Escobar, M. y L. Martínez-Uribe (2020). Network Coincidence Analysis: The netCoin R Package. Journal of Statistical Software, 93(11), 1-31. https://doi.org/10.18637/jss.v093.i11
  • Escobar, M., & Prieto, C. (2018). El análisis reticular de coincidencias. Empiria: Revista de Metodología de Ciencias Sociales, (39), 103-128. https://doi.org/10.5944/empiria.39.2018.20879
  • Escobar, M., Barrios, D., Prieto, C. Martínez-Uribe, L., Calvo, C. (2023). netCoin: Interactive networks with R. Disponible en: https://cran.r-project.org/package=netCoin.
  • Escobar, M., y C. Tejero (2018). El análisis reticular de coincidencias. Empiria: Revista de Metodología de Ciencias Sociales, (39), 129-148. https://doi.org/10.5944/empiria.39.2018.20879
  • Figuerola, C. G., Mercado, M. E., Rodríguez, A. Z., & Berrocal, J. L. A. (2021). Redes y comunidades de descriptores en artículos de biblioteconomía y ciencia de la información (1971-2020): Análisis de su evolución temporal mediante técnicas de análisis de redes. Scire: Representación y Organización del Conocimiento, 27(1), 71-84. https://doi.org/10.54886/scire.v27i1.4778
  • Gandomi, A., & Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  • Gelman, A., & Hill, J. (2006). Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
  • Gomes da Morais, de Miguel, M., Cardenas, J. M., & Calvo, E. (2020). Comparison of Radiological Criteria for Hyperprogressive Disease in Response to Immunotherapy. Cancer Treatment Reviews, 91, 1-7. https://doi.org/10.1016/j.ctrv.2020.102116
  • Greene, W. H. (2003). Econometric Analysis, 4th edition. International Edition, New Jersey: Prentice Hall.
  • Haberman, S. J. (1973). The Analysis of Residuals in Cross-Classified Tables. Biometrics, 29, 205-220. https://doi.org/10.2307/2529686
  • Haberman, S. J. (1978). Analysis of Qualitative Data. Vol. 1 Introductory Topics. New York: Academic Press.
  • Hofman, J. M., Sharma, A., & Watts, D. J. (2017). Prediction and Explanation in Social Systems. Science, 355(6324), 486-488. https://doi.org/10.1126/science.aal3856
  • Isvoranu, A.M. et al. (2022). Network Psychometrics with R: A Guide for Behavioral and Social Scientists. Routledge.
  • Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Kendall M.G. (1938). A new measure of rank correlation. Biometrika 30: 81–89. https://doi.org/10.1093/biomet/30.1-2.81
  • Koester, S.W., Bishay, A.E., Lyons, A.T., Lu, V.M., Naik, A., Graffeo, C.S., Levi, A.D., Komotar, R.J. (2023). The Neurosurgery Match: Covid-19 Comparison and Bibliometric Analysis. World Neurosurgery, 178, 13-23. https://doi.org/10.1016/j.wneu.2023.05.093
  • Kuhn, M. H. y T. S. Mcpartland (1954). An Empirical Investigation of Self-Attitudes. American Sociological Review, 19, 68-76. https://doi.org/10.2307/2088175
  • Lachman, M. E., Teshale, S., & Agrigoroaei, S. (2015). Midlife as a Pivotal Period in the Life Course: Balancing Growth and Decline at the Crossroads of Youth and Old Age. International Journal of Behavioral Development, 39(1), 20-31. https://doi.org/10.1177/0165025414533223
  • Madsen, H., & Thyregod, P. (2011). Introduction to General and Generalized Linear Models (Chapman & Hall/CRC Texts in Statistical Science). CRC Press.
  • Martínez-Uribe, L. (2022) La sociología a través de sus publicaciones en revista de impacto mediante el uso de Big Data. Empiria: Revista de Metodología de Ciencias Sociales, 53, 53-88. https://doi.org/10.5944/empiria.53.2022.32612
  • McLean, K. C., Boggs, S., Haraldsson, K., Lowe, A., Fordham, C., Byers, S., & Syed, M. (2020). Personal Identity Development in Cultural Context: The Socialization of Master Narratives about the Gendered Life Course. International Journal of Behavioral Development, 44(2), 116-126. https://doi.org/10.1177/0165025419854150
  • Miura, H. (2011). Stata graph library for network analysis. Stata Journal 12: 94–129. https://doi.org/10.1177/1536867X1201200107
  • Pearson, K. (1896). Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia. Philosophical Transactions of the Royal Society Ser. A 187: 253–318. https://doi.org/10.1098/rsta.1900.0022
  • Rossel, Y. (2012). lavaan: An R Package for Structural Equation Model. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
  • Ruiz-Roso, M. B. et al. (2020). Covid-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients, 12(8), 2327. https://doi.org/10.3390/nu12082327
  • Schmank, C. J., Goring, S. A., Kovacs, K., & Conway, A. R. (2019). Psychometric Network Analysis of the Hungarian WAIS. Journal of Intelligence, 7(3), 21. https://doi.org/10.3390/jintelligence7030021
  • Scott, J. (2011). Social Network Analysis: Developments, Advances, and Prospects. Social Network Analysis and Mining, 1, 21-26.
  • Sebastian-Valles, F. et al. (2022). Impact of Change in Body Composition During Follow-up on the Survival of Gep-Net. Cancers, 14(21), 5189. https://doi.org/10.3390/cancers14215189
  • Serrate-Gonzalez, S., Sanchez-Rojo, A., Andrade-Silva, L. E., & Muñoz-Rodriguez, J. M. (2023). Onlife Identity: The Question of Gender and Age in Teenagers' Online Behaviour. Comunicar: Media Education Research Journal, 31(75), 9-19. https://doi.org/10.3916/C75-2023-01
  • Spearman, C. E. (1904). The Proof and Measurement of Association Between Two Things. American Journal of Psychology 15: 72–101. https://doi.org/10.2307/1422689
  • Super, D. E. (1990). A Life-Span, Life-Space Approach to Career Development. Journal of Vocational Behavior, 16(3), 282-298. https://doi.org/10.1016/0001-8791(80)90056-1
  • Tajfel, H., & Turner, J. C. (1886). The Social Identity Theory of Intergroup Behavior. Political Psychology (pp. 276-293). Psychology Press. https://doi.org/10.1177/053901847401300204
  • Tukey, J. W. (1977). Exploratory Data Analysis (Vol. 2, pp. 131-160). Reading, MA: Addison-wesley.
  • Ulitzsch, E., Khanna, S., Rhemtulla, M., & Domingue, B. W. (2023). A Graph Theory Based Similarity Metric Enables Comparison of Subpopulation Psychometric Networks. Psychological Methods. https://doi.org/10.1037/met0000625
  • Upton, G. J. G. (2000). Cobweb Diagrams for Multi-Way Contingency Tables. Journal of the Royal Statisctical Society, 49(1), 79-85. https://doi.org/10.1111/1467-9884.00221
  • Van Elk, M. et al. (2017). Why are Protestants more Prosocial than Catholics? A Comparative Study among Orthodox Dutch Believers. The International Journal for the Psychology of Religion, 27(1, 65-81). https://doi.org/10.1080/10508619.2017.1245023
  • Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
  • Winer, B., Donald R. Brown, and Kenneth M. Michels (1991). Statistical Principles in Experimental Design. McGraw-Hill.
  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT press.
  • Zazo, Á. F. et al. (2023). Análisis reticular de las relaciones de colaboración de las empresas de desechos tecnológicos de Panamá. Scire: Representación y Organización del Conocimiento, 29(2), 51-63. https://doi.org/10.54886/scire.v29i2.4921