Enriching Earth observation datasets through semantics for climate change applications: The EIFFEL ontology
- Molina, Benjamin 2
- Palau, Carlos E. 2
- Calvo-Gallego, Jaime 1
-
1
Universidad de Salamanca
info
-
2
Universidad Politécnica de Valencia
info
ISSN: 2732-5121
Año de publicación: 2024
Volumen: 4
Páginas: 133
Tipo: Artículo
Otras publicaciones en: Open Research Europe
Resumen
Earth Observation (EO) datasets have become vital for decision support applications, particularly from open satellite portals that provide extensive historical datasets. These datasets can be integrated with in-situ data to power artificial intelligence mechanisms for accurate forecasting and trend analysis. However, researchers and data scientists face challenges in finding appropriate EO datasets due to inconsistent metadata structures and varied keyword descriptions. This misalignment hinders the discoverability and usability of EO data.
Información de financiación
Financiadores
-
Horizon 2020 Framework Programme
- 101003518
-
Agencia Estatal de Investigacion
- PID2021-126483OB-I00
-
Universidad de Salamanca Research Program
- PIC2-2021-02
Referencias bibliográficas
- (2022), Tech rep., 10.2878/94903
- (2022)
- (2022)
- R Shibasaki, (2009), Tech rep.
- (2022)
- (2022)
- B Molina
- (2022)
- (2021)
- (2022)
- (2022)
- P Patel-Schneider, (2014), pp. 261-276, 10.1007/978-3-319-11964-9_17
- A Whitcraft, (2019), Remote Sens Environ., 235, 10.1016/j.rse.2019.111470
- E Gerasopoulos, (2022), Environ Sci Policy., 132, pp. 296-307, 10.1016/j.envsci.2022.02.033
- N Noy, (2001), Tech rep.
- M Grüninger, (1995)
- (2022)
- A Kavvada, (2020), Remote Sens Environ., 247, 10.1016/j.rse.2020.111930
- B Molina, (2022)