Biopelículas y persistencia microbiana en la industria alimentaria

  1. Fernández-Gómez, Paula 1
  2. Prieto, Miguel 1
  3. Fernández-Escámez, Pablo S. 2
  4. López, Mercedes 1
  5. Alvarez-Ordóñez, Avelino 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

  2. 2 Universidad Politécnica de Cartagena (ETSIA)
Revista:
Arbor: ciencia, pensamiento y cultura

ISSN: 0210-1963

Año de publicación: 2020

Volumen: 196

Número: 795

Tipo: Artículo

DOI: 10.3989/ARBOR.2020.795N1002 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Arbor: ciencia, pensamiento y cultura

Objetivos de desarrollo sostenible

Resumen

Este artículo de revisión examina la importancia que tienen las comunidades microbianas que colonizan los ambien­tes y equipos de procesado de alimentos formando biopelículas o biofilms en la persistencia microbiana en la industria alimen­taria y consecuentemente, en la seguridad y la calidad de los alimentos. La atención se centra especialmente en biopelículas formadas por microorganismos no deseados, es decir, microor­ganismos alterantes y patógenos. Se presenta información so­bre la variabilidad intraespecífica en la formación, la ecología y la arquitectura de las biopelículas, y los factores que influyen en su formación. Asimismo, se resume la información disponible sobre nuevos agentes o estrategias para el control de la forma­ción o eliminación de biopelículas.

Información de financiación

Los autores agradecen la financiaci?n del Ministerio de Ciencia, Innovaci?n y Universidades (AGL201678085-P y AGL2017-82779-C2-2-R). Paula Fern?ndezG?mez es becaria pre-doctoral de la Junta de Castilla y Le?n (BOCYL-D-15122017-4).

Financiadores

Referencias bibliográficas

  • Al-Seraih, A., Belguesmia, Y., Baah, J., Szunerits, S., Boukherroub, R. y Drider, D. (2017). Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management. Antonie van Leeuwenhoek. International Journal of General and Molecular Microbiology, 110 (2), pp. 205-219.
  • Álvarez-Ordóñez, A., Alvseike, O., Omer, M. K ., Heir, E., Axelsson, L., Holck, A. y Prieto, M. (2013). Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. International Journal of Food Microbiology, 161 (3), pp. 220-230.
  • Araújo, P. A., Machado, I., Meireles, A., Leiknes, T. O., Mergulhão, F., Melo, L. F. y Simões, M. (2017). Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth. Food Research International, 95, pp. 101-107.
  • Ashraf, M. A., Ullah, S., Ahmad, I., Qureshi, A. K., Balkhair, K. S. y Abdur Rehman, M. (2014). Green biocides, a promising technology: Current and future applications to industry and industrial processes. Journal of the Science of Food and Agriculture, 94 (3), pp. 388-403.
  • Axelson, L., Holck, A., Rud, I., Samah, D., Tierce, P., Favre, M. y Kure, C. F. (2013). Cleaning of conveyor belt materials using ultrasound in a thin layer of water. Journal of Food Protection, 76 (8), pp. 1401-1407.
  • Bas, S., Kramer, M. y Stopar, D. (2017). Biofilm surface density determines biocide effectiveness. Frontiers in Microbiology, 8, 2443.
  • Bassi, D., Cappa, F., Gazzola, S., Orrù, L. y Cocconcelli, P. S. (2017). Biofilm formation on stainless steel by Streptococcus thermophilus UC8547 in milk environments is mediated by the proteinase PrtS. Applied and Environmental Microbiology, 83 (8), e02840-16.
  • Benítez-Páez, A. y Sanz, Y. (2017). Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinIONTM portable nanopore sequencer. GigaScience, 6 (7), pp. 1-12.
  • Berlanga, M. y Guerrero, R. (2016). Living together in biofilms: The microbial cell factory and its biotechnological implications. Microbial Cell Factories, 15, 165.
  • Bolocan, A. S., Pennone, V., O’Connor, P. M., Coffey, A., Nicolau, A. I., McAuliffe, O. y Jordan, K. (2017). Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate. Journal of Applied Microbiology, 122 (1), pp. 279-293.
  • Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J. C., Naïtali, M. y Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45 (Pt B), pp. 167-178.
  • Brown, H. L., Hanman, K., Reuter, M., Betts, R. P. y Vliet, A. H. M. van (2015). Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Frontiers in Microbiology, 6, 699.
  • Brown, H. L., Reuter, M., Salt, L. J., Cross, K. L., Betts, R. P. y Vliet, A. H. M. (2014). Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Applied and Environmental Microbiology, 80 (22), pp. 7053-7060.
  • Buzón-Durán, L., Alonso-Calleja, C., Riesco- Peláez, F. y Capita, R. (2017). Effect of subinhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiology, 65, pp. 294-301.
  • Caballero Gómez, N., Abriouel, H., Grande, M. J., Pérez Pulido, R. y Gálvez, A. (2013). Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. International Journal of Food Microbiology, 163 (2–3), pp. 96-100.
  • Capita, R., Buzón-Durán, L., Riesco-Peláez, F. y Alonso-Calleja, C. (2017). Effect of sub-lethal concentrations of biocides on the structural parameters and viability of the biofilms formed by Salmonella Typhimurium. Foodborne Pathogens and Disease, 14 (6), pp. 350-356.
  • Chaitiemwong, N., Hazeleger, W. C. y Beumer, R. R. (2014). Inactivation of Listeria monocytogenes by disinfectants and bacteriophages in suspension and stainless steel carrier tests. Journal of Food Protection, 77 (12), pp. 2012-2020.
  • Chen, C. Y., Hofmann, C. S., Cottrell, B. J., Strobaugh, T. P., Paoli, G. C., Nguyen, L. H., Yan, X. y Uhlich, G. A. (2013). Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS ONE, 8 (12), e84863
  • Cherifi, T., Jacques, M., Quessy, S. y Fravalo, P. (2017). Impact of nutrient restriction on the structure of Listeria monocytogenes biofilm grown in a microfluidic system. Frontiers in Microbiology 8, 864.
  • Chopra, L., Singh, G., Kumar Jena, K. y Sahoo, D. K. (2015). Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Scientific Reports, 5, 13412.
  • Chylkova, T., Cadena, M., Ferreiro, A. y Pitesky, M. (2017). Susceptibility of Salmonella biofilm and planktonic bacteria to common disinfectant agents used in poultry processing. Journal of Food Protection, 80 (7), pp. 1072-1079.
  • Coronel-León, J., Marqués, A. M., Bastida, J. y Manresa, A. (2016). Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. Journal of Applied Microbiology, 120 (1), pp. 99-111.
  • Cossu, A., Si, Y., Sun, G. y Nitin, N. (2017). Antibiofilm effect of poly(vinyl alcohol-coethylene) halamine film against Listeria innocua and Escherichia coli O157:H7. Applied and Environmental Microbiology, 83 (19), e00975-17.
  • Coughlan, L. M., Cotter, P. D., Hill, C. y Alvarez-Ordóñez, A. (2016). New weapons to fight old enemies: Novel strategies for the (bio)control of bacterial biofilms in the food industry. Frontiers in Microbiology, 7, 1641.
  • Daneshvar Alavi, H. E. y Truelstrup Hansen, L. (2013). Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling, 29 (10), pp. 1253-1268.
  • Dhowlaghar, N., De Abrew Abeysundara, P., Nannapaneni, R., Schilling, M. W., Chang, S., Cheng, W. H. y Sharma, C. S. (2018). Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions. Food Microbiology, 70, pp. 172-180.
  • Dimakopoulou-Papazoglou, D., Lianou, A. y Koutsoumanis, K. P. (2016). Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiology, 53 (Pt B), pp. 76–81.
  • Duanis-Assaf, D., Steinberg, D., Chai, Y. y Shemesh, M. (2016). The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Frontiers in Microbiology, 6, 1517.
  • Endersen, L., Buttimer, C., Nevin, E., Coffey, A., Neve, H., Oliveira, H., Lavigne, R. y O’Mahony, J. (2017). Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. International Journal of Food Microbiology, 253, pp. 1-11.
  • Fagerlund, A., Langsrud, S., Heir, E., Mikkelsen, M. I. y Møretrø, T. (2016). Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents. Frontiers in Microbiology, 7, 856.
  • Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., Ronse, A. y Slomianny, C. (2014). Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiology, 40, pp. 64-74.
  • Feng, G., Cheng, Y., Wang, S. Y., Hsu, L. C., Feliz, Y., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2014). Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling, 30 (10), pp. 1253–1268.
  • Fialho, J. F. Q., Naves, E. A. A., Bernardes, P. C., Ferreira, D. C., Anjos, L. D. dos, Gelamo, R. V., Sá, J. P. N. de y Andrade, N. J. de (2018). Stainless steel and polyethylene surfaces functionalized with silver nanoparticles. Food Science and Technology International, 24 (1), pp. 87-94.
  • Field, D., O’Connor, R., Cotter, P. D., Ross, R. P. y Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, 508.
  • Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A. y Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14 (9), pp. 563-575.
  • Gaglio, R., Cruciata, M., Gerlando, R. di, Scatassa, M. L., Cardamone, C., Mancuso, I., Sardina, M. T., Moschetti, G., Portolano, B. y Settanni, L. (2016). Microbial activation of wooden vats used for traditional cheese production and evolution of neoformed biofilms. Applied and Environmental Microbiology, 82 (2), pp. 585-595.
  • Gião, M. S. y Keevil, C. W. (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microbial Ecology, 67 (3), pp. 603-611.
  • Giaouris, E., Chorianopoulos, N., Doulgeraki, A. y Nychas, G. J. (2013). Co-Culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS ONE, 8 (10), e77276.
  • Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G. J., Kačániová, M., Czaczyk, K., Ölmez, H. y Simões, M. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 6, 841.
  • Gingichashvili, S., Duanis-Assaf, D., Shemesh, M., Featherstone, J. D. B., Feuerstein, O. y Steinberg, D. (2017). Bacillus subtilis biofilm development - a computerized study of morphology and kinetics. Frontiers in Microbiology, 8, 2072.
  • Gkana, E. N., Doulgeraki, A. I., Chorianopoulos, N. G. y Nychas, G. J. E. (2017). Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Frontiers in Microbiology, 8, 1295.
  • Gomes, L. C., Deschamps, J., Briandet, R. y Mergulhão, F. J. (2018). Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates. International Journal of Food Microbiology, 277, pp. 74-82.
  • González, S., Fernández, L., Campelo, A. B., Gutiérrez, D., Martínez, B., Rodríguez, A. y García, P. (2017). The behavior of Staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Applied and Environmental Microbiology, 83 (3), e02821-16.
  • Gutiérrez, D., Rodríguez-Rubio, L., Martínez, B., Rodríguez, A. y García, P. (2016). Bacteriophages as weapons against bacterial biofilms in the food industry. Frontiers in Microbiology, 7, 825.
  • Gutiérrez, D., Ruas-Madiedo, P., Martínez, B., Rodríguez, A. y García, P. (2014). Effective removal of Staphylococcal biofilms by the endolysin LysH5. PLoS ONE, 9 (9), e107307.
  • Han, Q., Song, X., Zhang, Z., Fu, J., Wang, X., Malakar, P. K. Liu, H., Pan, Y. y Zhao, Y. (2017). Removal of foodborne pathogen biofilms by acidic electrolyzed water. Frontiers in Microbiology, 8, 988.
  • Hayrapetyan, H., Muller, L., Tempelaars, M., Abee, T. y Nierop Groot, M. (2015). Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. International Journal of Food Microbiology, 200, pp. 72-79.
  • Heir, E., Møretrø, T., Simensen, A. y Langsrud, S. (2018). Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. International Journal of Food Microbiology, 275, pp. 46-55.
  • Herschend, J., Damholt, Z. B. V., Marquard, A. M., Svensson, B., Sørensen, S. J., Hägglund, P. y Burmølle, M. (2017). A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific Reports, 7 (1), 16483.
  • Hsu, L. C., Fang, J., Borca-Tasciuc, D. A., Worobo, R. W. y Moraru, C. I. (2013). Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Applied and Environmental Microbiology, 79 (8), pp. 2703-2712.
  • Huang, K., Chen, J., Nugen, S. R. y Goddard, J. M. (2016). Hybrid antifouling and antimicrobial coatings prepared by electroless co-deposition of fluoropolymer and cationic silica nanoparticles on stainless steel: efficacy against Listeria monocytogenes. ACS Applied Materials and Interfaces, 8 (25), pp. 15926-15936.
  • Hussain, M. S., Kwon, M., Tango, C. N. y Oh, D. H. (2018). Effect of electrolyzed water on the disinfection of Bacillus cereus biofilms: the mechanism of enhanced resistance of sessile cells in the biofilm matrix. Journal of Food Protection, 81 (5), pp. 860-869.
  • Hüwe, C., Schmeichel, J., Brodkorb, F., Dohlen, S., Kalbfleisch, K., Kreyenschmidt, M., Lorenz, R. y Kreyenschmidt, J. (2018). Potential of antimicrobial treatment of linear low-density polyethylene with poly((tert-butyl-amino)-methyl-styrene) to reduce biofilm formation in the food industry. Biofouling, 34 (4), pp. 378-387.
  • Iliadis, I., Daskalopoulou, A., Simões, M. y Giaouris, E. (2018). Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International, 107, pp. 10-18.
  • Jahid, I. K., Lee, N.-Y., Kim, A. y Ha, S.-D. (2013). Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. Journal of Food Protection, 76 (2), pp. 239- 247.
  • Jeon, H. R., Kwon, M. J. y Yoon, K. S. (2018). Control of Listeria innocua biofilms on food contact surfaces with slightly acidic electrolyzed water and the risk of biofilm cells transfer to duck meat. Journal of Food Protection, 81 (4), pp. 582-592.
  • Jindal, S., Anand, S., Metzger, L. y Amamcharla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101 (4), pp. 2921-2926.
  • Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R. y Abee, T. (2013). Diversity assessment of Listeria monocytogenes biofilm formation: Impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 165 (3), pp. 259-264.
  • Kim, S., Bang, J., Kim, H., Beuchat, L. R. y Ryu, J. H. (2013). Inactivation of Escherichia coli O157: H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms. International Journal of Food Microbiology, 167 (3), pp. 328- 336.
  • Kim, M. K., Zhao, A., Wang, A., Brown, Z. Z., Muir, T. W., Stone, H. A. y Bassler, B. L. (2017). Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2 (8), 17080.
  • Kiran, G. S., Lipton, A. N., Kennedy, J., Dobson, A. D. W. y Selvin, J. (2014). A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered Bugs, 5 (5), pp. 305-318.
  • Larsen, M. H., Dalmasso, M., Ingmer, H., Langsrud, S., Malakauskas, M., Mader, A., Møretrø, T., Možina, S. S., Rychli, K., Wagner, R., Wallace, R. J., Zentek, J. y Jordan, K. (2014). Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control, 44, pp. 92-109.
  • Li, J., Feng, J., Ma, L., Fuente Núñez, C. de la, Gölz, G. y Lu, X. (2017). Effects of meat juice on biofilm formation of Campylobacter and Salmonella. International Journal of Food Microbiology, 253, pp. 20-28.
  • Liu, J., Prindle, A., Humphries, J., Gabalda- Sagarra, M., Asally, M., Lee, D. Y. D., Ly, S. y Süel, G. M. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature, 523 (7562), pp. 550-554.
  • Mai-Prochnow, A., Clauson, M., Hong, J. y Murphy, A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6 (1), 38610.
  • Makovcova, J., Babak, V., Kulich, P., Masek, J., Slany, M. y Cincarova, L. (2017). Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microbial Biotechnology, 10 (4), pp. 819-832.
  • Mariani, C., Oulahal, N., Chamba, J. F., Dubois-Brissonnet, F., Notz, E. y Briandet, R. (2011). Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 22 (8), pp. 1357- 1362.
  • Marti, R., Schmid, M., Kulli, S., Schneeberger, K., Naskova, J., Knøchel, S. Ahrens, C. H. y Hummerjohann, J. (2017). Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resistant, heat-resistant strain FAM21845. Applied and Environmental Microbiology, 83 (15), e00628-17.
  • Martin, J. G. P., Oliveira e Silva, G. de, Fonseca, C. R. da, Morales, C. B., Souza Pamplona Silva, C., Miquelluti, D. L. y Porto, E. (2016). Efficiency of a cleaning protocol for the removal of enterotoxigenic Staphylococcus aureus strains in dairy plants. International Journal of Food Microbiology, 238, pp. 295-301.
  • McKenzie, K., Maclean, M., Timoshkin, I. V., Endarko, E., Macgregor, S. J. y Anderson, J. G. (2013). Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: Potential application for biofilm decontamination. Photochemistry and Photobiology, 89 (4), pp. 927- 935.
  • Montgomery, N. L. y Banerjee, P. (2015). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Research Notes, 8 (1), 235.
  • Moradi, M. y Tajik, H. (2017). Biofilm removal potential of neutral electrolysed water on pathogen and spoilage bacteria in dairy model systems. Journal of Applied Microbiology, 123 (6), pp. 1429-1437.
  • Nadell, C. D., Drescher, K. y Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14 (9), pp. 589- 600.
  • Nam, H., Seo, H. S., Bang, J., Kim, H., Beuchat, L. R. y Ryu, J. H. (2014). Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. International Journal of Food Microbiology, 188, pp. 122-127.
  • Nguyen, U. T. y Burrows, L. L. (2014). DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. International Journal of Food Microbiology, 187, pp. 26-32.
  • Nicholas, R., Dunton, P., Tatham, A. y Fielding, L. (2013). The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. Journal of Applied Microbiology, 15 (2), pp. 555-564.
  • Niemira, B. A., Boyd, G. y Sites, J. (2014). Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. Journal of Food Science, 79 (5), M917-M922.
  • Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., van Vliet, A. H. M., Fletcher, G. C., Hedderley, D., Palmer, J. y Flint, S. (2017). Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. International Journal of Food Microbiology, 256, pp. 45-53.
  • Ortiz, S., López, V. y Martínez-Suárez, J. V. (2014). The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes. International Journal of Food Microbiology, 189, pp. 106-112.
  • Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L. y Firmesse, O. (2017). Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. International Journal of Food Microbiology, 244, pp. 74-81.
  • Papaioannou, E., Giaouris, E. D., Berillis, P. y Boziaris, I. S. (2018). Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. International Journal of Food Microbiology, 267, pp. 9-19.
  • Pasvolsky, R., Zakin, V., Ostrova, I. y Shemesh, M. (2014). Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. International Journal of Food Microbiology, 181, pp. 19-27.
  • Puligundla, P. y Mok, C. (2017). Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. Journal of Applied Microbiology, 122 (5), pp. 1134-1148.
  • Røder, H. L., Raghupathi, P. K., Herschend, J., Brejnrod, A., Knøchel, S., Sørensen, S. J. y Burmølle, M. (2015). Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiology, 51, pp. 18-24.
  • Rodríguez-López, P., Saá-Ibusquiza, P., Mosquera-Fernández, M. y López-Cabo, M. (2015). Listeria monocytogenes-carrying consortia in food industry. Composition, subtyping and numerical characterisation of mono-species biofilm dynamics on stainless steel. International Journal of Food Microbiology, 206, pp. 84-95.
  • Rosenberg, G., Steinberg, N., Oppenheimer- Shaanan, Y., Olender, T., Doron, S., Ben- Ari, J., Sirota-Madi, A, Bloom-Ackermann, Z. y Kolodkin-Gal, I. (2016). Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. NPJ Biofilms and Microbiomes, 2 (1), 15027.
  • Sadekuzzaman, M., Yang, S., Mizan, M. F. R. y Ha, S. D. (2017). Reduction of Escherichia coli O157:H7 in biofilms using bacteriophage BPECO 19. Journal of Food Science, 82 (6), pp. 1433-1442.
  • Sepehr, S., Rahmani-Badi, A., Babaie-Naiej, H. y Soudi, M. R. (2014). Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria. PLoS ONE, 9 (7), e101677.
  • Shafique, M., Alvi, I. A., Abbas, Z. y ur Rehman, S. (2017). Assessment of biofilm removal capacity of a broad host range bacteriophage JHP against Pseudomonas aeruginosa. APMIS, 125 (6), pp. 579-584.
  • Silva Fernandes, M. da, Kabuki, D. Y. y Kuaye, A. Y. (2015). Behavior of Listeria monocytogenes in a multi-species biofilm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. International Journal of Food Microbiology, 200, pp. 5-12.
  • Skovager, A., Larsen, M. H., Castro-Mejia, J. L., Hecker, M., Albrecht, D., Gerth, U., Arneborg, N. y Ingmer, H. (2013). Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. International Journal of Food Microbiology, 165 (1), pp. 35-42.
  • Slany, M., Oppelt, J. y Cincarova, L. (2017). Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants studied via a transcriptomic analysis using transcriptome sequencing (RNA-seq). Applied and Environmental Microbiology, 83 (24), e01643-17.
  • Son, H., Park, S., Beuchat, L. R., Kim, H. y Ryu, J. H. (2016). Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel. International Journal of Food Microbiology, 238, pp. 165-171.
  • Stevens, M. R. E., Luo, T. L., Vornhagen, J., Jakubovics, N. S., Gilsdorf, J. R., Marrs, C. F., Møretrø, T. y Rickard, A. H. (2015). Coaggregation occurs between microorganisms isolated from different environments. FEMS Microbiology Ecology, 91 (11), fiv123.
  • Tack, I. L. M. M., Nimmegeers, P., Akkermans, S., Hashem, I. y van Impe, J. F. M. (2017). Simulation of Escherichia coli dynamics in biofilms and submerged colonies with an individual-based model including metabolic network information. Frontiers in Microbiology, 8, 2509.
  • Tarifa, M. C., Genovese, D., Lozano, J. E. y Brugnoni, L. I. (2018). In situ microstructure and rheological behavior of yeast biofilms from the juicprocessing industries. Biofouling, 34 (1), pp. 74-85.
  • Techaruvichit, P., Takahashi, H., Kuda, T., Miya, S., Keeratipibul, S. y Kimura, B. (2016). Adaptation of Campylobacter jejuni to biocides used in the food industry affects biofilm structure, adhesion strength, and cross-resistance to clinical antimicrobial compounds. Biofouling, 32 (7), pp. 827-839.
  • Turonova, H., Briandet, R., Rodrigues, R., Hernould, M., Hayek, N., Stintzi, A., Pazlarova, J. y Tresse, O. (2015). Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: Comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiology, 6, 709.
  • Visvalingam, J., Ells, T. C. y Yang, X. (2017). Impact of persistent and nonpersistent generic Escherichia coli and Salmonella sp. recovered from a beef packing plant on biofilm formation by E. coli O157. Journal of Applied Microbiology, 123 (6), pp. 1512-1521.
  • Vogeleer, P., Tremblay, Y. D. N., Jubelin, G., Jacques, M. y Harel, J. (2016). Biofilm-forming abilities of Shiga toxin-producing Escherichia coli isolates associated with human infections. Applied and Environmental Microbiology, 82 (5), pp. 1448-1458.
  • Wang, R., Kalchayanand, N., Schmidt, J. W. y Harhay, D. M. (2013). Mixed biofilm formation by Shiga Toxin–Producing Escherichia coli and Salmonella enterica Serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances. Journal of Food Protection, 76 (9), pp. 1513- 1522.
  • Wang, J., Ray, A. J., Hammons, S. R. y Oliver, H. F. (2015). Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathogens and Disease, 12 (2), pp. 151-158.
  • Xue, T., Chen, X. y Shang, F. (2014). Short communication: Effects of lactose and milk on the expression of biofilm-associated genes in Staphylococcus aureus strains isolated from a dairy cow with mastitis. Journal of Dairy Science, 97 (10), pp. 6129-6134.
  • Yu, S., Su, T., Wu, H., Liu, S., Wang, D., Zhao, T., Jin, Z., Du, W., Zhu, M.-J., Chua, S. L., Yang, L., Zhu, D., Gu, L. y Ma, L. Z. (2015). PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Research, 25 (12), pp. 1352-1367.
  • Zhao, T., Podtburg, T. C., Zhao, P., Chen, D., Baker, D. A., Cords, B. y Doyle, M. P. (2013). Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant. Journal of Food Protection, 76 (4), pp. 601-607.
  • Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J. y Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE, 10 (9), e0138209.