Enzymatic hydrolysis of the industrial solid residue of red seaweed after agar extraction: Extracts characterization and modelling
- Beltrán, S.
- Riaño, P.
- Trigueros, E.
- Sanz, M.T.
- Filipigh, A.
-
1
Universidad de Burgos
info
ISSN: 0960-3085, 1744-3571
Année de publication: 2021
Volumen: 126
Pages: 356-366
Type: Article
D'autres publications dans: Food and Bioproducts Processing
Références bibliographiques
- Adler-Nissen, (1983), Qual. Plant. Plant Foods Hum. Nutr., 32, pp. 411, 10.1007/BF01091198
- Alonso-Riaño, (2020), Antioxidants, 9, pp. 265, 10.3390/antiox9030265
- Álvarez-Viñas, (2019), Mar. Drugs, 17, pp. 1, 10.3390/md17110620
- Barbarino, (2005), J. Appl. Phycol., 17, pp. 447, 10.1007/s10811-005-1641-4
- Baruah, (2018), Front. Energy Res., 6, pp. 1, 10.3389/fenrg.2018.00141
- Bleakley, (2017), Foods, 6, 33, pp. 1
- Boulila, (2015), Ind. Crops Prod., 74, pp. 485, 10.1016/j.indcrop.2015.05.050
- Brunner, (2009), J. Supercrit. Fluids, 47, pp. 373, 10.1016/j.supflu.2008.09.002
- Faulds, (2008), J. Agric. Food Chem., 56, pp. 7038, 10.1021/jf800433c
- Ferrera-Lorenzo, (2014), Fuel Process. Technol., 121, pp. 25, 10.1016/j.fuproc.2013.12.017
- Filisetti-Cozzi, (1991), Anal. Biochem., 197, pp. 157, 10.1016/0003-2697(91)90372-Z
- Fleurence, (1995), J. Appl. Phycol., 7, pp. 393, 10.1007/BF00003796
- Friedman, (2004), J. Agric. Food Chem., 52, pp. 385, 10.1021/jf030490p
- Gligor, (2019), Trends Food Sci. Technol., 88, pp. 302, 10.1016/j.tifs.2019.03.029
- González-Centeno, (2015), Ultrason. Sonochem., 22, pp. 506, 10.1016/j.ultsonch.2014.05.027
- Hardouin, (2014), J. Appl. Phycol., 26, pp. 1029, 10.1007/s10811-013-0201-6
- Hosni, (2013), Ind. Crops Prod., 47, pp. 291, 10.1016/j.indcrop.2013.03.023
- Kim, (2015), Bioresour. Technol., 175, pp. 128, 10.1016/j.biortech.2014.10.050
- Kitanović, (2008), Biochem. Eng. J., 41, pp. 1, 10.1016/j.bej.2008.02.010
- Lourenço, (2002), Phycocolloid Res., 42, pp. 233, 10.1111/j.1440-1835.2002.tb00156.x
- Lowry, (1951), J. Biol. Chem., 193, pp. 265, 10.1016/S0021-9258(19)52451-6
- Nadar, (2018), Food Res. Int., 108, pp. 309, 10.1016/j.foodres.2018.03.006
- Olivares-molina, (2016), J. Appl. Phycol., 28, pp. 1295, 10.1007/s10811-015-0665-7
- Postma, (2018), J. Appl. Phycol., 30, pp. 1281, 10.1007/s10811-017-1319-8
- Puri, (2012), Trends Biotechnol., 30, pp. 37, 10.1016/j.tibtech.2011.06.014
- Rakariyatham, (2019), Waste Biomass Valoriz., 11, pp. 3987, 10.1007/s12649-019-00723-9
- Rodrigues, (2015), Food Chem., 183, pp. 197, 10.1016/j.foodchem.2015.03.057
- Ruiz, (2015), pp. 467
- Sabeena, (2020), J. Appl. Phycol., 32, pp. 615, 10.1007/s10811-019-01906-6
- Sánchez-Bastardo, (2017), Carbohydr. Polym., 160, pp. 143, 10.1016/j.carbpol.2016.12.035
- Sánchez-Camargo, (2016), Food Chem., 192, pp. 67, 10.1016/j.foodchem.2015.06.098
- Shobana, (2017), Bioresour. Technol., 244, pp. 1341, 10.1016/j.biortech.2017.05.172
- Shukla, (2016), Bioresour. Technol., 220, pp. 584, 10.1016/j.biortech.2016.08.096
- Singleton, (1999), Methods Enzymol., 299, pp. 152, 10.1016/S0076-6879(99)99017-1
- Sluiter, (2010), J. Agric. Food Chem., 58, pp. 9043, 10.1021/jf1008023
- Trigueros, (2020), J. Appl. Phycol.
- Vásquez, (2019), J. Appl. Phycol., 31, pp. 1999, 10.1007/s10811-018-1712-y
- Wang, (2010), LWT – Food Sci. Technol., 43, pp. 1387, 10.1016/j.lwt.2010.05.010
- Wasewar, (2003), Chem. Eng. Sci., 58, pp. 3385, 10.1016/S0009-2509(03)00221-5
- Widyarani, (2016), Appl. Microbiol. Biotechnol., 100, pp. 7909, 10.1007/s00253-016-7441-8
- Wijesinghe, (2012), Fitoterapia, 83, pp. 6, 10.1016/j.fitote.2011.10.016