Disposable amperometric biotool for peanut detection in processed foods by targeting a chloroplast DNA marker

  1. Gamella Carballo, María 1
  2. Ballesteros Redondo, Isabel 1
  3. Ruiz-Valdepeñas Montiel, Víctor 1
  4. Sanchiz Giraldo, África 1
  5. Cuadrado Hoyo, Carmen 2
  6. Pingarrón Carrazón, José Manuel 1
  7. Linacero de la Fuente, María Rosario 1
  8. Campuzano, Susana 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (España)
Zeitschrift:
Talanta

ISSN: 0039-9140

Datum der Publikation: 2024

Ausgabe: 277

Nummer: 126350

Seiten: 126350

Art: Artikel

DOI: 10.1016/J.TALANTA.2024.126350 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Talanta

Zusammenfassung

This work reports the development and application of a disposable amperometric sensor built on magnetic microcarriers coupled to an Express PCR strategy to amplify a specific DNA fragment of the chloroplast trnH-psbA. The procedure involves the selective capture of a 68-mer synthetic target DNA (or unmodified PCR products) through sandwich hybridization with RNA capture probe-modified streptavidin MBs and RNA signaling probes, labeled using antibodies specific to the heteroduplexes and secondary antibodies tagged with horseradish peroxidase. Amperometric measurements were performed on screen-printed electrodes using the H2O2/hydroquinone system. Achieving a LOD of 3 pM for the synthetic target, it was possible to detect 2.5 pg of peanut DNA and around 10 mg kg−1 of peanut in binary mixtures (defatted peanut flours prepared in spelt wheat). However, the detectability decreased between 10 and 1000 times in processed samples depending on the treatment. The Express PCR-bioplatform was applied to the detection of peanut traces in foodstuff.

Informationen zur Finanzierung

Bibliographische Referenzen

  • Sicherer, (2007), J. Allergy Clin. Immunol. Pract., 120, pp. 491, 10.1016/j.jaci.2007.07.015
  • Cohen, (2004), J. Allergy Clin. Immunol., 114, pp. 1159, 10.1016/j.jaci.2004.08.007
  • Maleki, (2000), J. Allergy Clin. Immunol., 106, pp. 763, 10.1067/mai.2000.109620
  • Cabanillas, (2015), Food Chem., 183, pp. 18, 10.1016/j.foodchem.2015.03.023
  • Asensio, (2008), Food Control, 19, pp. 1, 10.1016/j.foodcont.2007.02.010
  • Montserrat, (2015), Food Control, 54, pp. 300, 10.1016/j.foodcont.2015.01.049
  • Chassaigne, (2009), J. Proteomics, 72, pp. 511, 10.1016/j.jprot.2009.02.002
  • Kaufmann, (2012), Anal. Bioanal. Chem., 403, pp. 1233, 10.1007/s00216-011-5629-4
  • Alves, (2016), Crit. Rev. Food Sci. Nutr., 56, pp. 2304, 10.1080/10408398.2013.831026
  • Ruiz-Valdepeñas Montiel, (2016), Sensor Actuat B-Chem., 236, pp. 825, 10.1016/j.snb.2016.01.123
  • Ravindran, (2021), Crit. Rev. Food Sci. Nutr., 63, pp. 1055, 10.1080/10408398.2021.1958745
  • Cuadrado, (2023), Innov. Food Sci. Emerg. Technol., 86, 10.1016/j.ifset.2023.103383
  • Linacero, (2020), Crit. Rev. Food Sci. Nutr., 60, pp. 1077, 10.1080/10408398.2018.1557103
  • Caldwell, (2017), Annu. Rev. Food Sci. Technol., 8, pp. 57, 10.1146/annurev-food-030216-030216
  • Mafra, (2008), Eur. Food Res. Technol., 227, pp. 649, 10.1007/s00217-007-0782-x
  • Zhang, (2019), TrAC, Trends Anal. Chem., 114, pp. 278, 10.1016/j.trac.2019.01.021
  • Bettazzi, (2008), Anal. Chim. Acta, 614, pp. 93, 10.1016/j.aca.2008.03.027
  • Wang, (2011), J. Agric. Food Chem., 59, pp. 6889, 10.1021/jf200933b
  • Ruiz-Valdepeñas Montiel, (2017), Sensor Actuat B-Chem, 245, pp. 895, 10.1016/j.snb.2017.02.041
  • Prachugsorn, (2022), Food Control, 39
  • Campuzano, (2017), Chemosensors, 5, pp. 8, 10.3390/chemosensors5010008
  • Campuzano, (2023), Anal. Bioanal. Chem., 416, pp. 2151, 10.1007/s00216-023-04805-5
  • Scaravelli, (2008), Eur. Food Res. Technol., 227, pp. 857, 10.1007/s00217-007-0797-3
  • Bergerová, (2011), Eur. Food Res. Technol., 232, pp. 1087, 10.1007/s00217-011-1484-y
  • López-Calleja, (2013), Food Control, 30, pp. 480, 10.1016/j.foodcont.2012.09.017
  • Zhang, (2015), Food Chem., 174, pp. 547, 10.1016/j.foodchem.2014.11.091
  • Puente-Levire, (2018), J. Agric. Food Chem., 66, pp. 8623, 10.1021/acs.jafc.8b02053
  • Hollingsworth, (2009), Mol. Ecol. Resour, 9, pp. 439, 10.1111/j.1755-0998.2008.02439.x
  • Daniell, (2016), Genome Biol., 17, pp. 134, 10.1186/s13059-016-1004-2
  • James, (2004), Food Res. Int., 37, pp. 395, 10.1016/j.foodres.2004.02.004
  • Kim, (2018), Appl. Biol. Chem., 61, pp. 345, 10.1007/s13765-018-0365-5
  • Sánchiz, (2021), Foods, 10, pp. 1421, 10.3390/foods10061421
  • Qavi, (2011), Anal. Chem., 83, pp. 5949, 10.1021/ac201340s
  • Ruiz-Valdepeñas Montiel, (2018), ACS Sens., 3, pp. 211, 10.1021/acssensors.7b00869
  • Gamella, (2023), Bioelectrochemistry, 150, 10.1016/j.bioelechem.2022.108357
  • Miranda-Castro, (2018), Electroanalysis, 30, pp. 1229, 10.1002/elan.201800049
  • Campuzano, (2019), Chemelectrochem, 6, pp. 60, 10.1002/celc.201800667
  • Owen, (2010), Microsc. Res. Tech., 73, pp. 623, 10.1002/jemt.20803
  • Povedano, (2020), Anal. Chem., 92, pp. 5604, 10.1021/acs.analchem.0c00628
  • Ozcelikay, (2023), J. Pharm. Biomed. Anal., 231, 10.1016/j.jpba.2023.115411
  • Pereira-Barros, (2019), Biosens. Bioelectron., 137, pp. 171, 10.1016/j.bios.2019.05.011
  • Eguílaz, (2012), Biosen. Bioelectron., 26, pp. 517, 10.1016/j.bios.2010.07.060
  • Hird, (2003), Eur. Food Res. Technol., 217, pp. 265, 10.1007/s00217-003-0726-z
  • Stephan, (2004), J. Agric. Food Chem., 52, pp. 3754, 10.1021/jf035178u
  • Scaravelli, (2009), Anal. Bioanal. Chem., 395, pp. 127, 10.1007/s00216-009-2849-y
  • Köppel, (2009), Eur. Food Res. Technol., 230, pp. 367, 10.1007/s00217-009-1164-3
  • Köppel, (2012), Eur. Food Res. Technol., 235, pp. 843, 10.1007/s00217-012-1806-8
  • Rencová, (2014), Acta Vet. Brno, 83, pp. S77, 10.2754/avb201483S10S77
  • Cheng, (2016), Food Chem., 199, pp. 799, 10.1016/j.foodchem.2015.12.058
  • Pierboni, (2018), Food Control, 92, pp. 128, 10.1016/j.foodcont.2018.04.039
  • Sheu, (2018), Food Chem., 257, pp. 67, 10.1016/j.foodchem.2018.02.124
  • Yuan, (2018), Sci. Rep., 8, pp. 8682, 10.1038/s41598-018-26982-5
  • Ladenburger, (2018), J. AOAC Int., 101, pp. 170, 10.5740/jaoacint.17-0406
  • Tortajada-Genaro, (2012), J. Agric. Food Chem., 60, pp. 36, 10.1021/jf2037032
  • Sun, (2012), J. Agric. Food Chem., 60, pp. 10979, 10.1021/jf3027233
  • Sun, (2015), Food Chem., 172, pp. 335, 10.1016/j.foodchem.2014.09.042
  • Sun, (2015), Talanta, 131, pp. 521, 10.1016/j.talanta.2014.07.078
  • Sánchez-Paniagua López, (2014), Biosens. Bioelectron., 62, pp. 350, 10.1016/j.bios.2014.06.065
  • Sánchiz, (2018), Food Control, 89, pp. 227, 10.1016/j.foodcont.2018.02.021